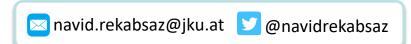
Footprint of Societal Biases in Natural Language Processing

Navid Rekab-saz



Agenda

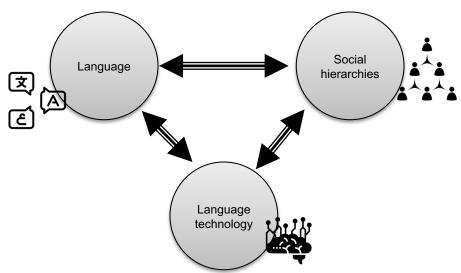
- Bias and Fairness in NLP ... what? why?
- Measuring & Monitoring Biases
- Algorithmic Bias Mitigation

Agenda

- Bias and Fairness in NLP ... what? why?
- Measuring & Monitoring Biases
- Algorithmic Bias Mitigation

Language and Society

- Language ...
 - takes on and defines social meaning
 - forms and maintains social hierarchies by ...
 - labeling social groups
 - transmitting the beliefs about social groups



Machine Learning (ML) Cycle

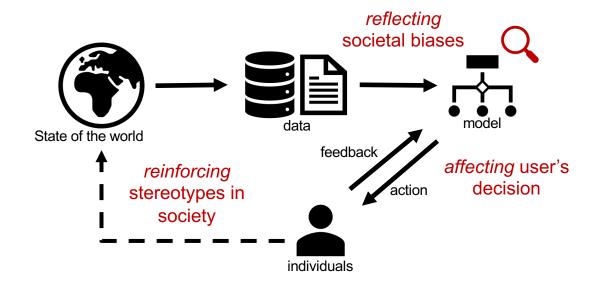
Machine Learning and Societal Biases

ML can observe societal phenomena

 Questions like "how the perception of girls and boys towards the color pink has changed over time?"

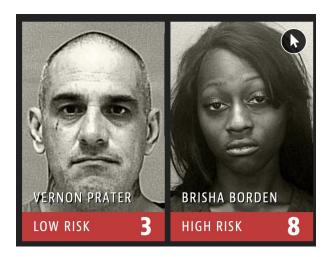
ML can reinforce societal biases

 Encoded societal biases and stereotypes can affect decision making of users and eventually reinforce biases in society



Bias in Crime Discovery

Predicted risk of reoffending



Bias in Search Engines

Chief Executive Officer (CEO): 7 Key ...

hivelife.com

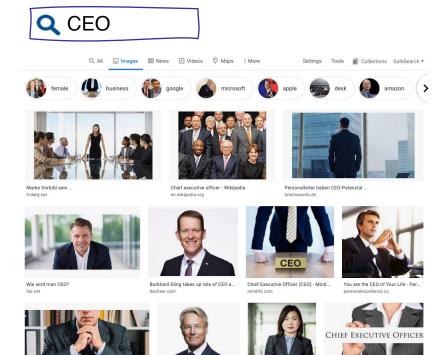


ABB ernennt neuen CEO | IT-Markt

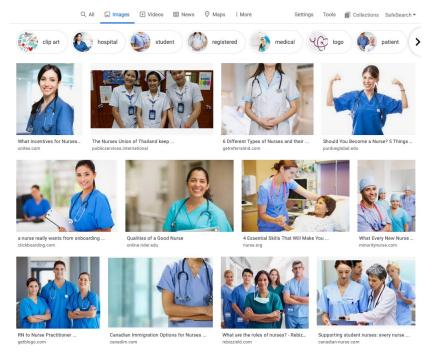
it-markt.ch

How to use 'CEO magic' wh...

europeanceo.com

Was bedeutet CEO? Verständlich erklärt ...

praxistipps.chip.de



Bias in Automatic Machine Translation

same gender-neutral pronoun

Bias in Image Processing

Google says sorry for racist auto-tag in photo app

https://www.theguardian.com/technology/2015/jul/01/google-sorry-racist-auto-tag-photo-app

FaceApp's creator apologizes for the app's skin-lightening 'hot' filter

https://www.theverge.com/2017/4/25/15419522/faceapp-hot-filter-racist-apology

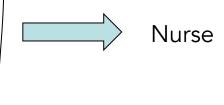
Beauty.AI's 'robot beauty contest' is back – and this time it promises not to be racist

https://www.wired.co.uk/article/robot-beauty-contest-beauty-ai

Complexity of Studying Bias/Fairness in NLP

A "sample" task – occupation prediction from biographies:

[She/He?] graduated from Lehigh University, with honours in 1998.
[Nancy/Adam?] has years of experience in weight loss surgery, patient support, education, and diabetes.



Language is inherently intertwined with semantics and implicit meanings

What we talk about when we talk about Bias

 Biases and stereotypes per se do not imply negative connotations.

From "bias", we mean ...

"Inclination or prejudice for or against one person or group, especially in a way considered to be unfair."

Oxford dictionary

"demographic disparities in algorithmic systems that are objectionable for societal reasons."

Fairness and Machine Learning Solon Barocas, Moritz Hardt, Arvind Narayanan, 2019, fairmlbook.org

"I think your test grading is biased in favor students who answer the test questions correctly."

How harmful?!

Allocational harms

- A system allocates resources and opportunities unfairly to different social groups
 - E.g., credit and jobs distribution to minorities

Representational harms

- A system represents some social groups in a less favorable light than others.
 - E.g., stereotyping in a search engine or a recommender system that propagates negative generalizations about particular social groups

Fairness

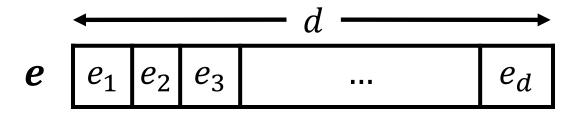
- What is fair?!
- How is it quantified? Which metrics?
- How can we optimize models for a societal/philosophical concept?!

Agenda

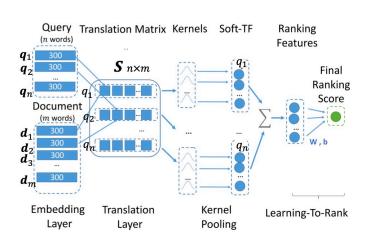
- Bias and Fairness in NLP ... what? why?
- Measuring & Monitoring Biases
- Algorithmic Bias Mitigation

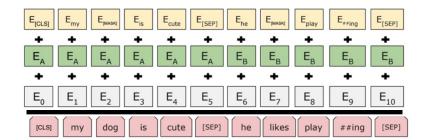
Embeddings!

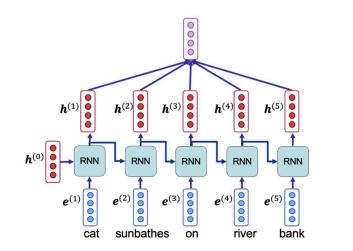
- A word/sentence/document is represented with a vector of d dimensions
- The vector represents the meaning or semantics



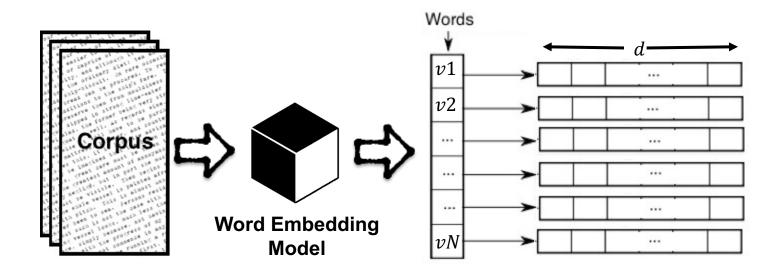
Modern NLP is built on Embeddings

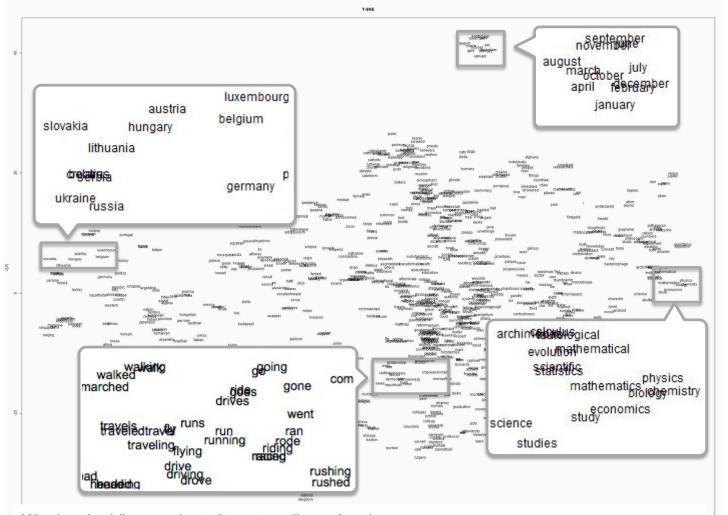






Recipe for Creating Word Embeddings





Word embeddings projected to a two-dimensional space

Semantic Information in Word Embeddings

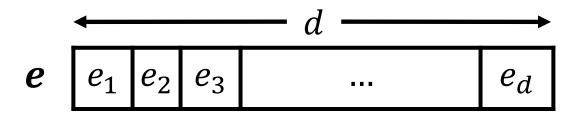
man to woman is like king to ? (queen)

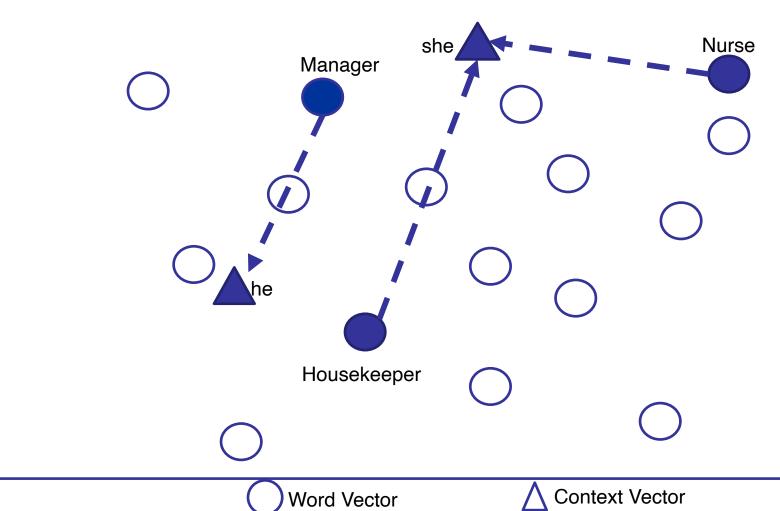
$$x_{\text{king}} - x_{\text{man}} + x_{\text{woman}} = x^*$$

 $x^* \approx x_{\text{que}en}$

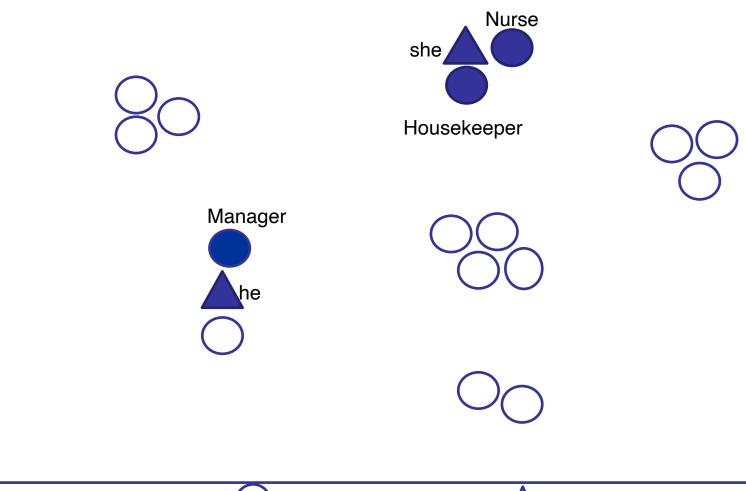
Embeddings and bias

Representation learning encodes information but also may encode the underlying biases in data!





Context Vector



Word Vector \triangle Context Vector

Biases reflected in word analogies

she to he is like ...

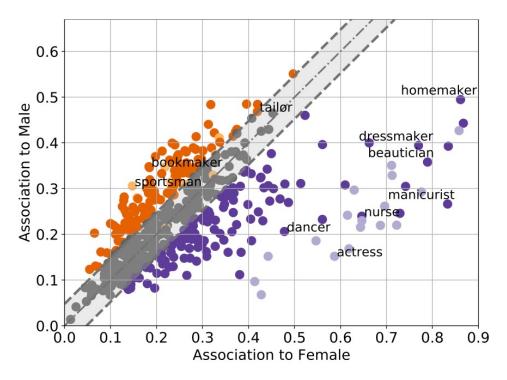
Gender	stereotype	she-he	analogies
--------	------------	--------	-----------

sewing-carpentry	registered nurse-physician	housewife-shopkeeper
nurse-surgeon	interior designer-architect	softball-baseball
blond-burly	feminism-conservatism	cosmetics-pharmaceuticals
giggle-chuckle	vocalist-guitarist	petite-lanky
sassy-snappy	diva-superstar	charming-affable
volleyball-football	cupcakes-pizzas	lovely-brilliant

Gender appropriate *she-he* analogies

queen-king	sister-brother	mother-father
waitress-waiter	ovarian cancer-prostate	cancer convent-monastery

Biases reflected in Word Embeddings



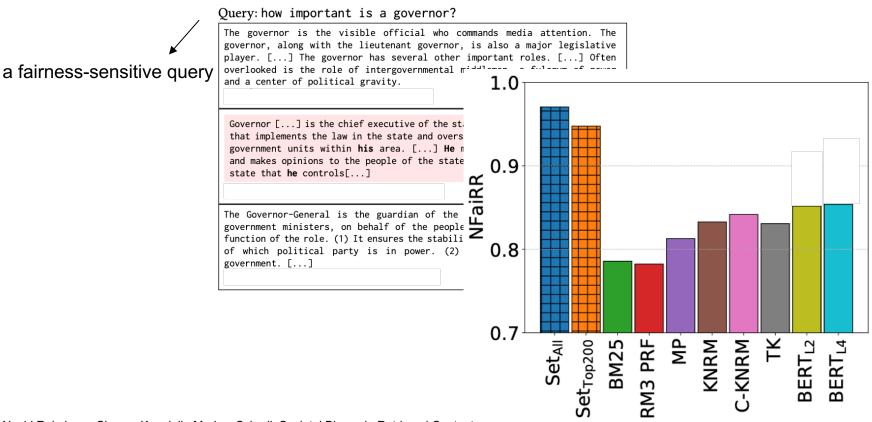
Associations are measured using a word2vec model, trained on a recent Wikipedia corpus

Correlations with job market statistics

Correlation results of the gender bias values, calculated with word embedding to the statistics of the portion of women in occupations

Order	Representation	Method	Labor Data		Census	s Data
			Spearman ρ	Pearson's r	Spearman ρ	Pearson's r
High-Order		DIRECTIONAL	0.28	0.07	0.18	0.02
	PMI	CENTROID	0.14	0.21	0.35	0.40
		AVERAGEHIGH	0.33	0.24	0.27	0.19
		DIRECTIONAL	0.05	0.07	0.00	0.00
	PMI-SVD	CENTROID	0.41	0.47	0.46	0.53
		$AVERAGE_{HIGH}$	0.41	0.49	0.49	0.56
First-Order	PMI	AVERAGEFIRST	0.53	0.51	0.57	0.62
		DIRECTIONAL	0.45	0.49	0.39	0.47
	PPMI	CENTROID	0.43	0.46	0.45	0.50
High-Order		$Average_{High}$	0.43	0.46	0.45	0.52
riigii Ordei		DIRECTIONAL	0.05	0.07	0.00	0.00
	PPMI-SVD	CENTROID	0.41	0.47	0.46	0.53
		AVERAGEHIGH	0.41	0.49	0.49	0.56
First-Order	PPMI	AVERAGEFIRST	0.59	0.58	0.64	0.64
		DIRECTIONAL	0.26	0.37	0.26	0.28
	SPPMI	CENTROID	0.39	0.45	0.45	0.48
High-Order		AVERAGEHIGH	0.32	0.40	0.44	0.48
riigii Order	SPPMI-SVD	DIRECTIONAL	0.17	0.29	0.11	0.03
		CENTROID	0.28	0.35	0.39	0.43
		AVERAGEHIGH	0.26	0.38	0.36	0.46
First-Order	SPPMI	AVERAGEFIRST	0.57	0.49	0.52	0.48
		DIRECTIONAL	0.53	0.56	0.34	0.46
High-Order	GloVe	CENTROID	0.58	0.60	0.39	0.51
		AVERAGE _{HIGH}	0.60	0.60	0.39	0.51
First-Order	initGlove	AVEDAGE	0.38	0.42	0.40	0.51
riist-Order	eGloVe	AVERAGEFIRST	0.56	0.57	0.42	0.52
		DIRECTIONAL	0.50	0.54	0.58	0.64
High-Order	SG	CENTROID	0.55	0.57	0.60	0.65
.		AVERAGEHIGH	0.55	0.57	0.59	0.65
First-Order	eSG	AVERAGEFIRST	0.66	0.61	0.67	0.70

Fairness in Information Retrieval



Navid Rekabsaz, Simone Kopeinik, Markus Schedl. Societal Biases in Retrieved Contents: Measurement Framework and Adversarial Mitigation of BERT Rankers. *In proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (2021).*

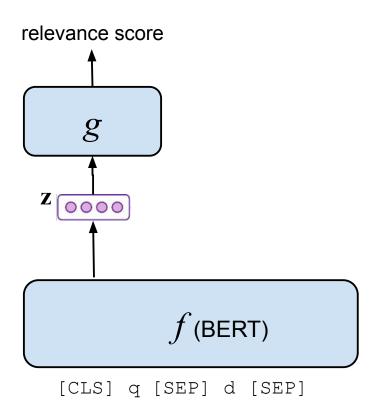
Agenda

- Bias and Fairness in NLP ... what? why?
- Measuring & Monitoring Biases
- Algorithmic Bias Mitigation

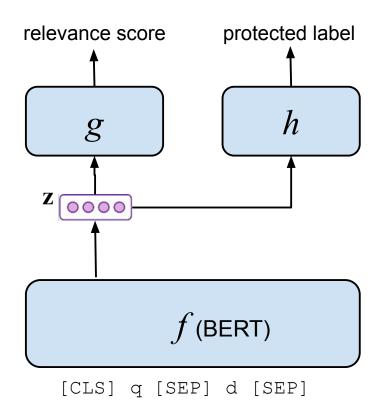
Algorithmic Bias Mitigation

- Methods to mitigate or reduce bias
 - The aim is to make the output or decision of a model agnostic to sensitive features (such as gender, race, ethnicity, age)
- Categories:
 - Pre-processing: by changing/manipulating dataset
 - In-processing:
 - By adding fairness criteria to model's objective function
 - By training networks that remove sensitive information in learned embeddings
 - Post-processing: by changing/rearranging model's outputs

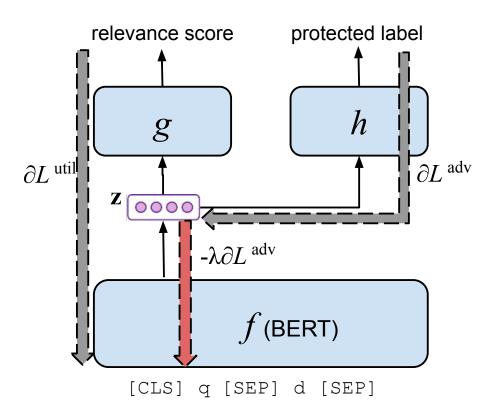
In-processing Bias Mitigation: Adversarial Training



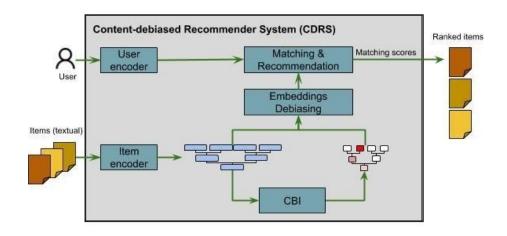
In-processing Bias Mitigation: Adversarial Training

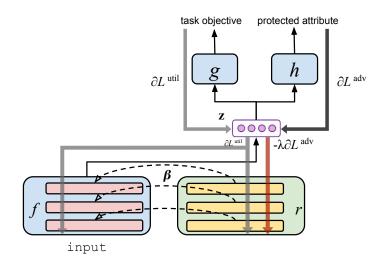


In-processing Bias Mitigation: Adversarial Training



Fairness through Filtering Bias Flow





- Mitigating Gender Bias in Job Recommender Systems: A Machine Learning-Law Synergy (TIMELY)
- Funded by Linz Institute of Technology (LIT)

Final words...

- Fairness and bias are social concepts and inherently normative
- Bias in NLP systems should be grounded in its social context
- "... without this grounding, researchers and practitioners risk measuring and mitigating only what is convenient to measure and mitigate, rather than what is most normatively concerning."

Blodgett et al. [2020]

- Real problems need interdisciplinary thinking!
 - Addressing bias requires going beyond CS and getting engaged with disciplines such as sociolinguistics, linguistic anthropology, sociology, law, psychology, etc..

Questions?

