344.063 KV Special Topic:

Natural Language Processing with Deep Learning

Transformers

Navid Rekab-saz

navid.rekabsaz@jku.at

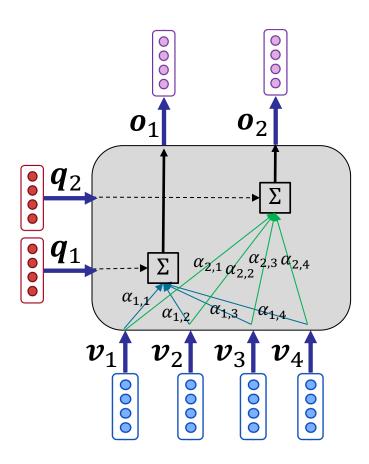
Agenda

- Transformer encoder
- Transformer decoder
- seq2seq with Transformers

Agenda

- Transformer encoder
- Transformer decoder
- seq2seq with Transformers

Attentions! – recap



 $\alpha_{i,j}$ is the attention score of query q_i on value v_j α_i is the vector of attentions of query q_i over value vectors V which forms a probability distribution

Attention Networks – recap

• Given query vector q_i , an attention network uses the attention similarity function f to assign a non-normalized attention score $\tilde{\alpha}_{i,j}$ to value vector v_j :

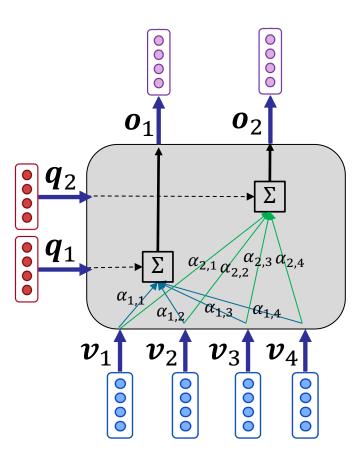
$$\tilde{\alpha}_{i,j} = f(\boldsymbol{q}_i, \boldsymbol{v}_j)$$

 Then, the attention scores over values are turned to a probability distribution using softmax:

$$\alpha_i = \operatorname{softmax}(\widetilde{\alpha}_i), \qquad \sum_{j=1}^{|V|} \alpha_{i,j} = 1$$

• Finally, output vector o_i regarding query q_i is defined as the sum of the value vectors weighted by their corresponding attentions:

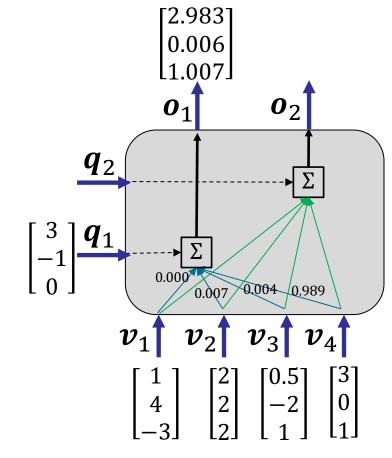
$$\boldsymbol{o}_i = \sum_{j=1}^{|V|} \alpha_{i,j} \boldsymbol{v}_j$$



Example – recap

$$\widetilde{\boldsymbol{\alpha}}_{1} = \begin{bmatrix} \boldsymbol{q}_{1} \boldsymbol{v}_{1}^{\mathrm{T}} = -1 \\ \boldsymbol{q}_{1} \boldsymbol{v}_{2}^{\mathrm{T}} = 4 \\ \boldsymbol{q}_{1} \boldsymbol{v}_{3}^{\mathrm{T}} = 3.5 \\ \boldsymbol{q}_{1} \boldsymbol{v}_{4}^{\mathrm{T}} = 9 \end{bmatrix} \rightarrow \boldsymbol{\alpha}_{1} = \begin{bmatrix} 0.000 \\ 0.007 \\ 0.004 \\ 0.989 \end{bmatrix}$$

$$\boldsymbol{o}_{1} = 0.000 \begin{bmatrix} 1\\4\\-3 \end{bmatrix} + 0.007 \begin{bmatrix} 2\\2\\2 \end{bmatrix} + 0.004 \begin{bmatrix} 0.5\\-2\\1 \end{bmatrix} + 0.989 \begin{bmatrix} 3\\0\\1 \end{bmatrix} \quad \begin{bmatrix} 3\\-1\\0 \end{bmatrix} \boldsymbol{q}_{1}$$
$$\boldsymbol{o}_{1} = \begin{bmatrix} 2.983\\0.006 \end{bmatrix}$$



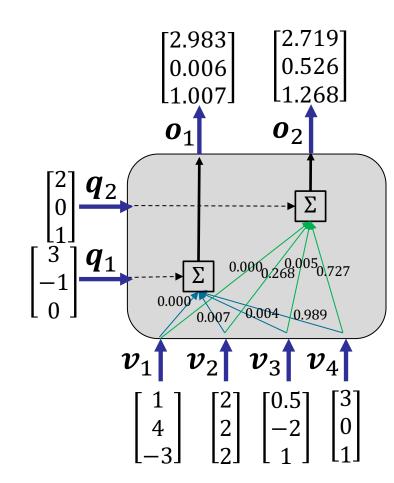
Example – recap

$$\widetilde{\boldsymbol{\alpha}}_{2} = \begin{bmatrix} \boldsymbol{q}_{2} \boldsymbol{v}_{1}^{\mathrm{T}} = -1 \\ \boldsymbol{q}_{2} \boldsymbol{v}_{2}^{\mathrm{T}} = 6 \\ \boldsymbol{q}_{2} \boldsymbol{v}_{3}^{\mathrm{T}} = 2 \\ \boldsymbol{q}_{2} \boldsymbol{v}_{4}^{\mathrm{T}} = 7 \end{bmatrix} \rightarrow \boldsymbol{\alpha}_{2} = \begin{bmatrix} 0.000 \\ 0.268 \\ 0.005 \\ 0.727 \end{bmatrix}$$

$$\boldsymbol{o}_{2} = 0.000 \begin{bmatrix} 1\\4\\-3 \end{bmatrix} + 0.268 \begin{bmatrix} 2\\2\\2\\2 \end{bmatrix} + 0.005 \begin{bmatrix} 0.5\\-2\\1 \end{bmatrix} + 0.727 \begin{bmatrix} 3\\0\\1 \end{bmatrix} \quad \begin{bmatrix} 3\\-1\\0 \end{bmatrix} \boldsymbol{q}_{1}$$

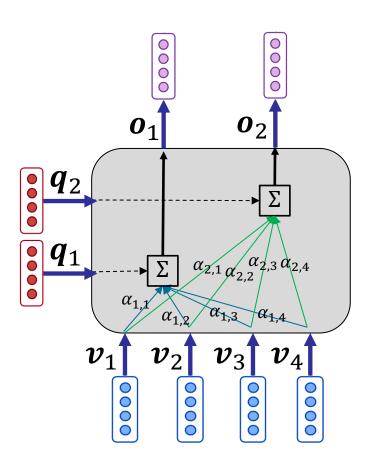
$$\boldsymbol{o}_{2} = \begin{bmatrix} 2.719\\0.526 \end{bmatrix}$$

$$\boldsymbol{v}_{1}$$

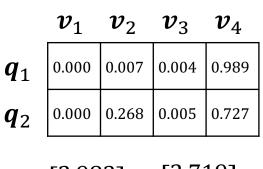


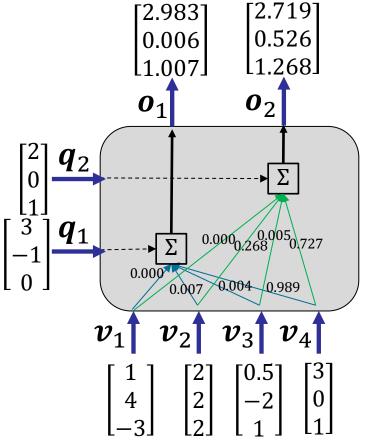
Attention table

	v_1	\boldsymbol{v}_2	\boldsymbol{v}_3	v_4
$oldsymbol{q}_1$	$\alpha_{1,1}$	$\alpha_{1,2}$	$\alpha_{1,3}$	$\alpha_{1,4}$
\boldsymbol{q}_2	$\alpha_{2,1}$	$\alpha_{2,2}$	$\alpha_{2,3}$	$\alpha_{2,4}$



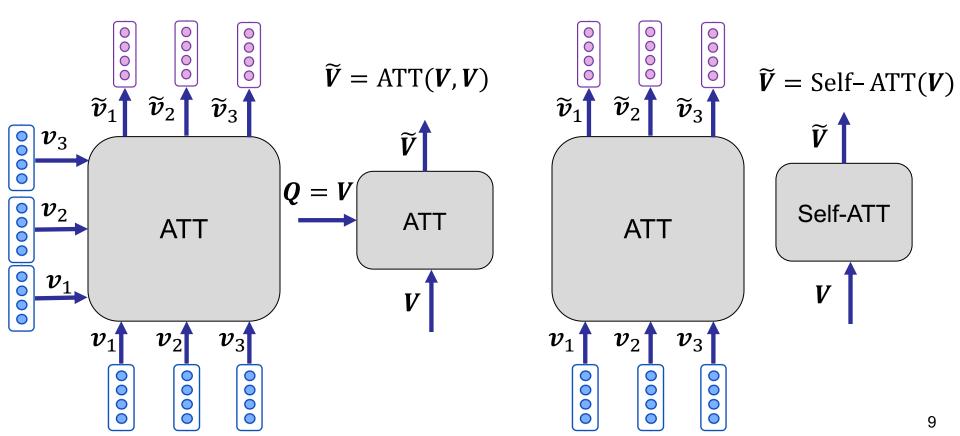
In the example:





Self-attention

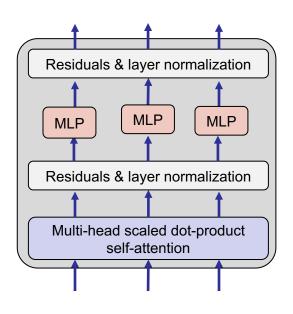
- Self-attention is when the values are also given as the queries: Q = V
- Self-attention encodes a sequence V to a contextualized sequence \widetilde{V}
 - In self-attention, each input vector v_i attends to all other input vectors V, and outputs \tilde{v}_i as a composition of input vectors
 - Output vector $\widetilde{m{v}}_i$ is the contextual embedding of the input vector $m{v}_i$



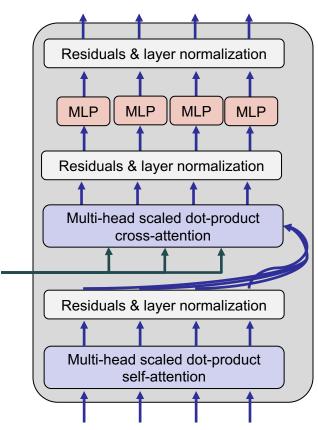
Transformers

- Attention network with DL best practices!
 - Originally introduced in the context of machine translation and is now widely adopted for sequence encoding and decoding

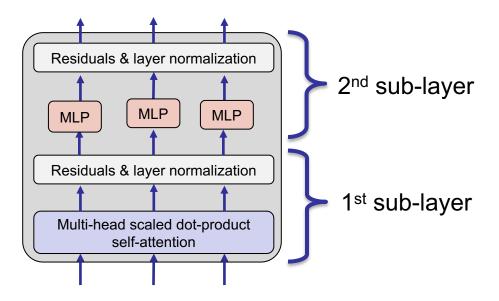
Transformer Encoder



Transformer Decoder

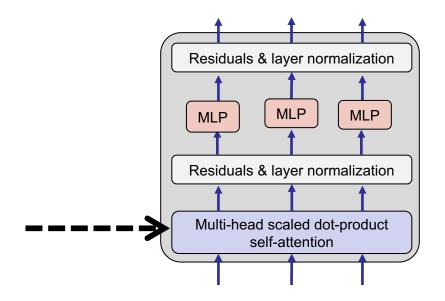


- Transformer Encoder consists of two sub-layers:
 - 1st: Multi-head scaled dot-product self-attention
 - 2nd: Position-wise multi-layer perceptron (feed forward)
- Each sub-layer is followed by residual networks and layer normalization
 - Drop-outs are applied after each computation



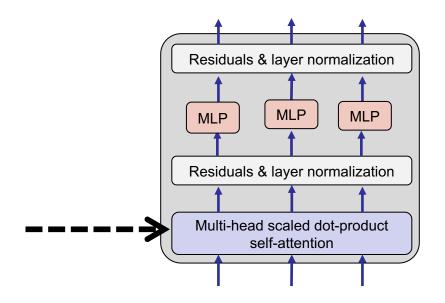
Let's start from multi-head scaled dot-product self-attention:

- 1. Scaled dot-product attention
- Multi-head attention
- 3. self-attention



Let's start from multi-head scaled dot-product self-attention:

- 1. Scaled dot-product attention
- Multi-head attention
- 3. self-attention



Basic dot-product attention – recap

Non-normalized attention scores:

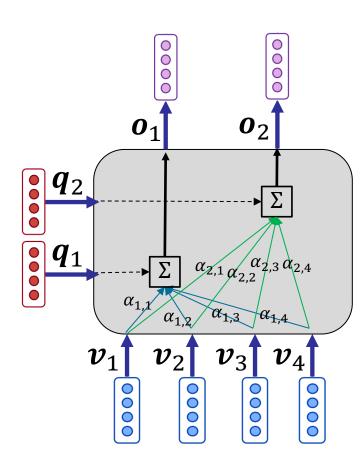
$$\widetilde{\alpha}_{i,j} = f(\boldsymbol{q}_i, \boldsymbol{v}_j)$$

$$\widetilde{\alpha}_{i,j} = \boldsymbol{q}_i \boldsymbol{v}_i^{\mathrm{T}}$$

- In this case, $d_q = d_v$
- Attention network has no parameter to learn!
- Softmax over value vectors:

$$\alpha_i = \operatorname{softmax}(\widetilde{\alpha}_i)$$

• Output (weighted sum): $oldsymbol{o}_i = \sum_{j=1}^{|V|} lpha_{i,j} oldsymbol{v}_j$



Scaled dot-product attention

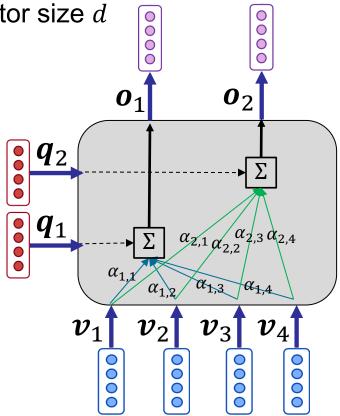
- Problem with basic dot-product attention:
 - As d gets large, the variance of $\tilde{\alpha}_{i,j}$ increases ...
 - ... this makes softmax very peaked for some values of $\widetilde{\pmb{lpha}}_i$...
 - ... and hence its gradient gets smaller
- One approach: normalize/scale $\tilde{\alpha}_{i,j}$ by vector size d

Scaled dot-product attention

Non-normalized attention scores:

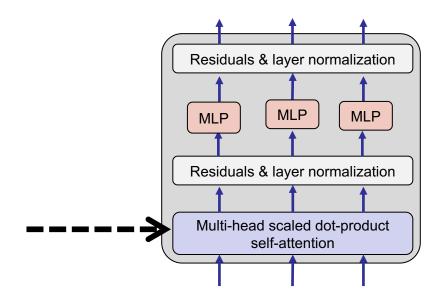
$$\widetilde{\alpha}_{i,j} = \frac{\boldsymbol{q}_i \boldsymbol{v}_j^{\mathsf{T}}}{\sqrt{d}}$$

- Softmax over values: $\alpha_i = \operatorname{softmax}(\widetilde{\alpha}_i)$
- Output: $oldsymbol{o}_i = \sum_{j=1}^{|V|} lpha_{i,j} oldsymbol{v}_j$



Let's start from multi-head scaled dot-product self-attention:

- Scaled dot-product attention
- 2. Multi-head attention
- 3. self-attention

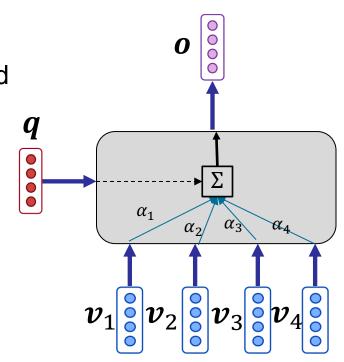


Softmax bottleneck!

- Softmax is applied to non-normalized attention vectors
 - Recall: softmax makes the maximum value much higher than the other

$$z = [1 \ 2 \ 5 \ 6] \rightarrow softmax(z) = [0.004 \ 0.013 \ 0.264 \ 0.717]$$

- Common in language, a word may be related to <u>several</u> other words in a sequence, each through a <u>specific concept</u>
 - Like the relations of a verb to its subject and object
- However, normal (single-head) attention network aggregates all concepts in one set
- In this case, due to softmax, value vectors must compete for the attention of query vector → softmax bottleneck



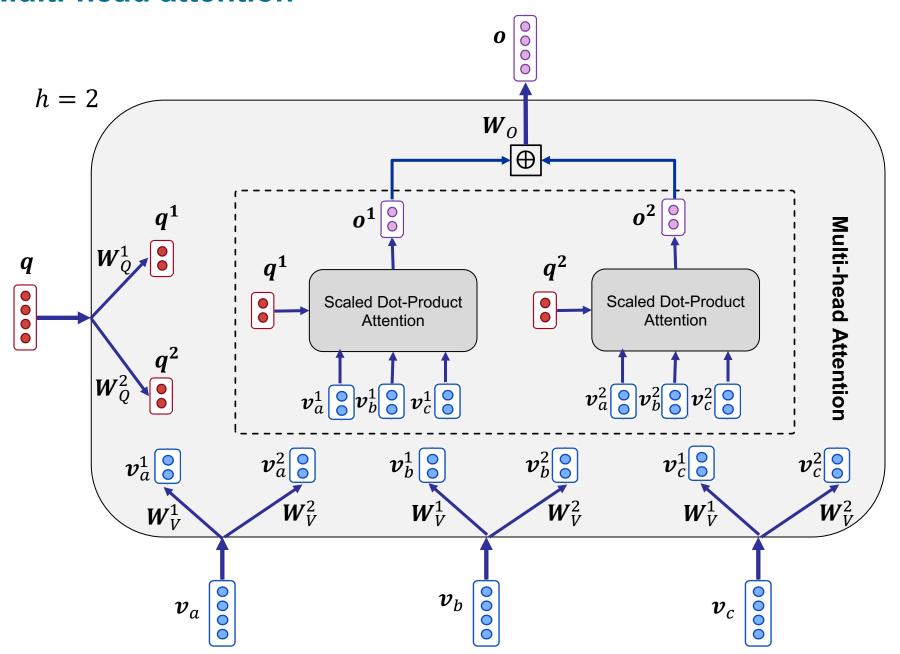
Multi-head attention

 Multi-head attention approaches softmax bottleneck by calculating multiple sets of attentions between a query and values

Multi-head attention:

- Transfer each query/value vector to h query/value subspaces, each called a head
- 2. In each subspace, apply a <u>normal (single-head) attention network</u> using the queries and values transferred to the subspace to achieve the output vectors of that head
- 3. Concatenate the output vectors of all heads in respect to a query to achieve the final output of the query
- In multi-head attention, each head (and each subspace) can specialize on capturing a specific kind of relation

Multi-head attention



Multi-head attention – formulation

• Transfer every query q_i to h vectors, each with size d/h:

size:
$$d/h$$
 $q_i^1 = q_i W_Q^1$... $q_i^h = q_i W_Q^h$ Matrix size: $d \times d/h$

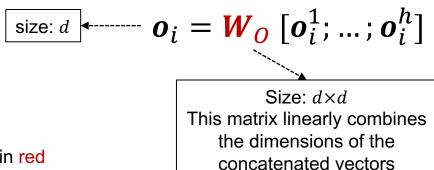
• Transfer every value v_j to h vectors, each with size d/h:

size:
$$d/h$$
 $v_j^1 = v_j W_V^1$... $v_j^h = v_j W_V^h$ Matrix size: $d \times d/h$

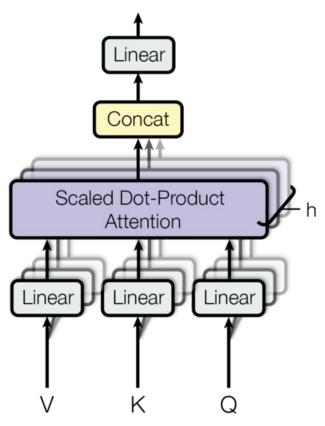
Calculate outputs of subspaces corresponding to q_i:

size:
$$d/h$$
 $\boldsymbol{o}_i^1 = \operatorname{ATT}(\boldsymbol{q}_i^1, \boldsymbol{V}^1)$... $\boldsymbol{o}_i^h = \operatorname{ATT}(\boldsymbol{q}_i^h, \boldsymbol{V}^h)$

• Concatenate outputs of subspaces for q_i as its final output:



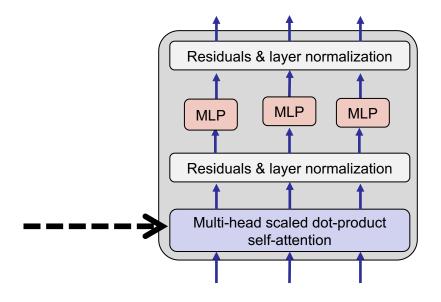
Multi-head attention – graphic in original paper



- Default number of heads in Transformers: h = 8
- Recall: Attentions (and Transformers) in fact have three inputs (not two), namely queries, keys, and values.
 - Keys are used to calculate attentions
 - Values are used to produce outputs

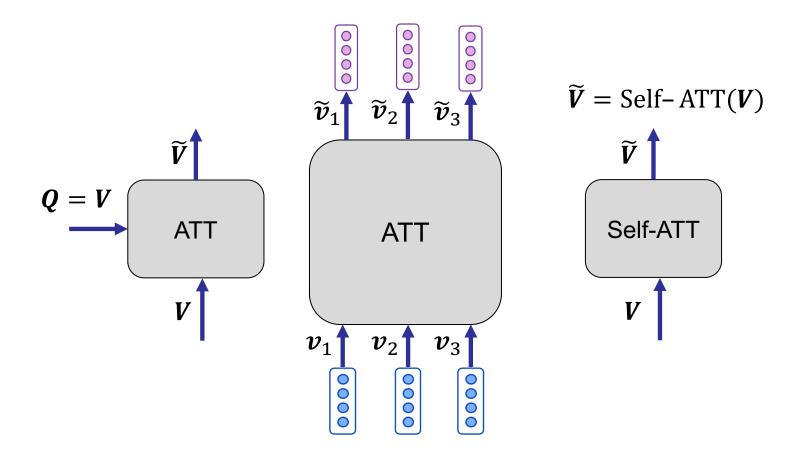
Let's start from <u>multi-head scaled dot-product self-attention</u>:

- Scaled dot-product attention
- Multi-head attention
- 3. Self-attention



Self-attention (recap)

- Values are the same as queries
- Each output vector is the contextual embedding of the corresponding input vector
 - $\widetilde{oldsymbol{v}}_i$ is the contextual embedding of $oldsymbol{v}_i$

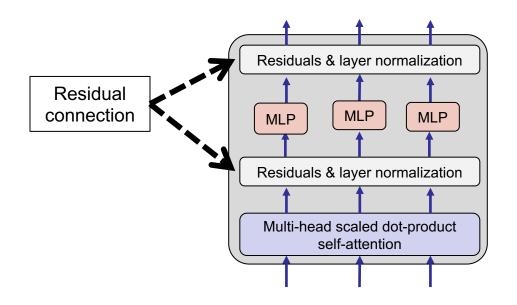


Residuals

Residual (short-cut) connection:

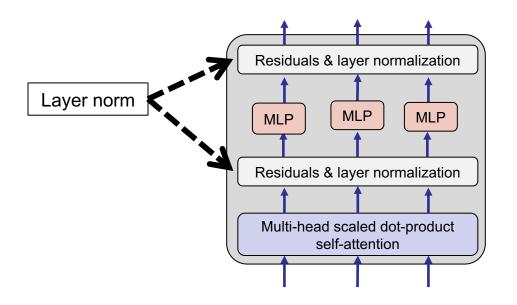
$$output = f(x) + x$$

- Learn in detail:
 - He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian (2016). "Deep Residual Learning for Image Recognition". In proc. of CVPR
 - Srivastava, Rupesh Kumar; Greff, Klaus; Schmidhuber, Jürgen (2015). "Highway Networks". https://arxiv.org/pdf/1505.00387.pdf



Layer normalization

- Layer normalization changes the activations of each vector to have mean 0 and variance 1 ...
 - ... and learns two parameters per layer to shift the mean and variance

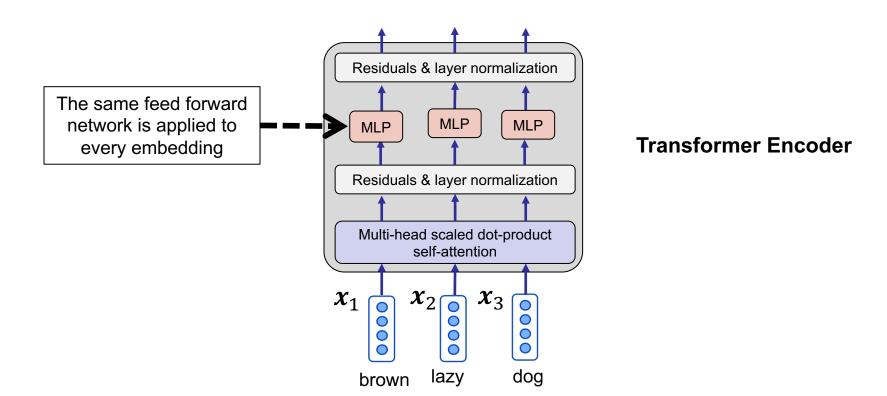


Transformer Encoder

Paper: https://arxiv.org/pdf/1607.06450.pdf

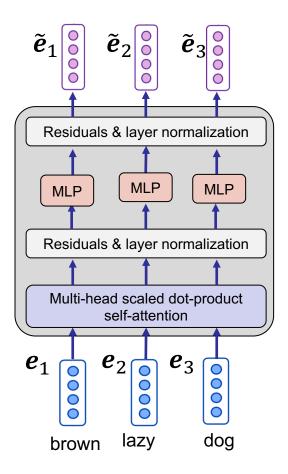
Multi-layer perceptron on embedding

- A two-layer multi-layer perceptron (with ReLU) is applied to each output embedding
 - This layer provides the capacity for a non-linear transformation over each (contextualized) embedding



Transformer Encoder – all together

- Transformer Encoder receive input embeddings and outputs the corresponding contextualized embeddings
 - Processing all inputs happen at the same time → non auto-regressive



Transformer Encoder – summary

- A self-attention model using
 - multi-head scaled dot-product attention
 - followed by the same feed-forward layer applied to each embedding
 - all packed with residuals, layer norms, and dropouts

Transformers as in attentions ...

- do not have locality (position) bias
 - A long-distance context has "equal opportunity"
- process all the input together with a single computation per each layer
 - Friendly with parallel computations in GPU

Learn more and study the PyTorch implementation: http://nlp.seas.harvard.edu/2018/04/03/attention.html

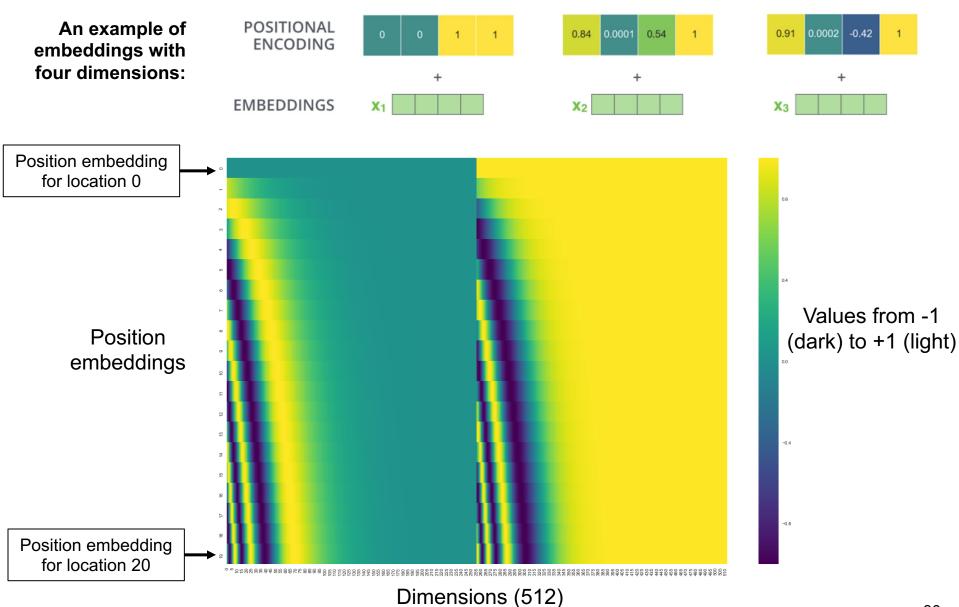
Position embeddings

- Transformers are agnostic to the position of tokens
 - A context token in long-distance has the same effect as the one in short-distance (no *locality bias*)
- However, the positions of tokens in a sequence might be informative and important in some tasks

Position embeddings – a common approach in Transformers:

- Create embeddings representing positions in a sequence, and add the values of the position embeddings to the token embeddings at corresponding positions
 - Position embedding is usually created using a sine/cosine function
 - It can also be learned end-to-end with the model parameters
 - Using position embeddings, the same token at different positions of a sequence will have different final representations

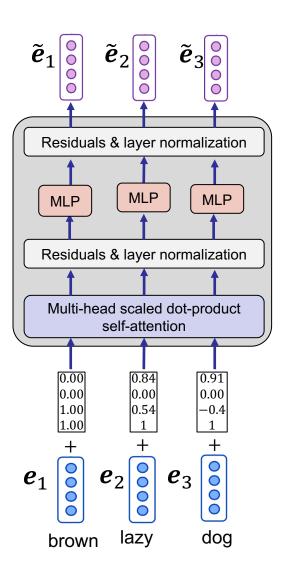
Position embeddings – examples



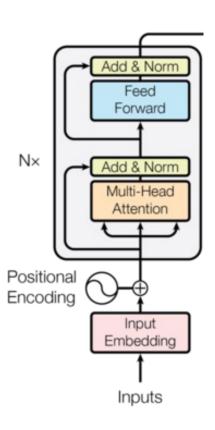
Source: http://jalammar.github.io/illustrated-transformer/

30

Transformer Encoder with position embedding



Transformer Encoder with position embedding



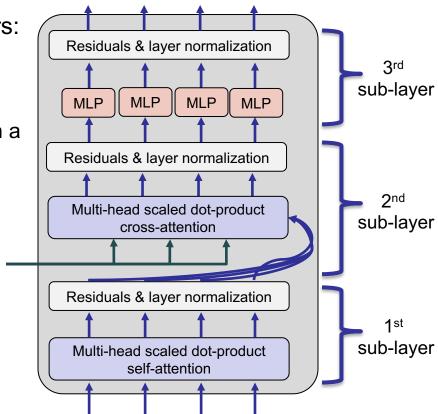
Agenda

- Transformer encoder
- Transformer decoder
- seq2seq with Transformers

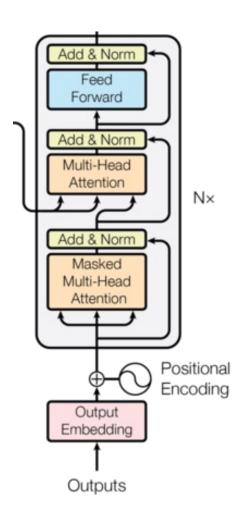
Transformer Decoder

Transformer Decoder consists of three sub-layers:

- 1st: Masked multi-head self-attention
 - Exactly like Transformer Encoder but also with a masking functionality
- 2nd: Multi-head cross attention
 - Values are given from outside
 - Like from the outputs of a Transformer Encoder
 - Queries are the outputs of the 1st sub-layer
- 3rd: Position-wise multi-layer perceptron
 - Exactly like Transformer Encoder



Transformer Decoder with position embedding



Agenda

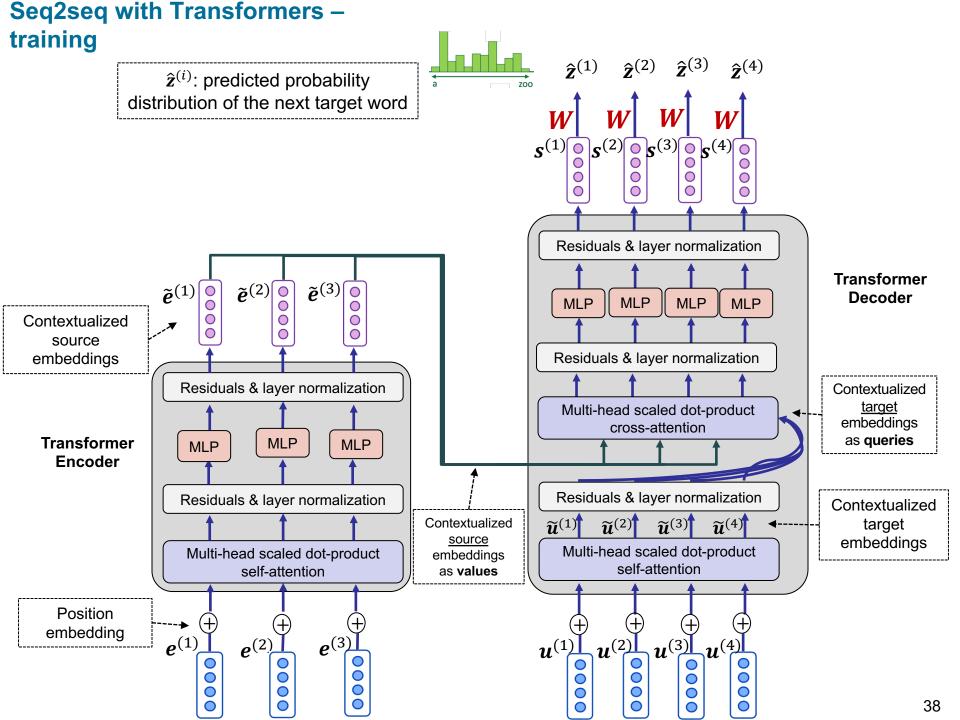
- Transformer encoder
- Transformer decoder
- seq2seq with Transformers

Sequence-to-sequence modeling – recap

- Given the source sequence $X = \{x^{(1)}, x^{(2)}, ..., x^{(L)}\}, ...$
- generate the target sequence $Y = \{y^{(1)}, y^{(2)}, \dots, y^{(T)}\}$
- A seq2seq model estimates the conditional probability:

and at inference time, it generates a new sequence Y* such that:

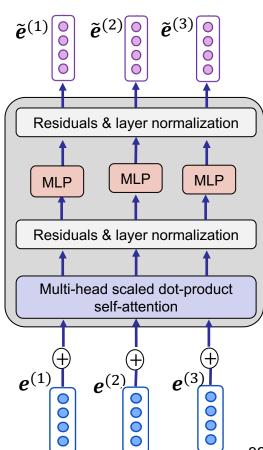
$$Y^* = \operatorname*{argmax}_{Y} P(Y|X)$$



- Two sets of vocabularies
 - \mathbb{V}_e is the set of vocabularies for source sequences
 - \mathbb{V}_d is the set of vocabularies for target sequences
- Source sequence X and target sequence Y
 - Both are typically started/ended with < bos >/< eos >

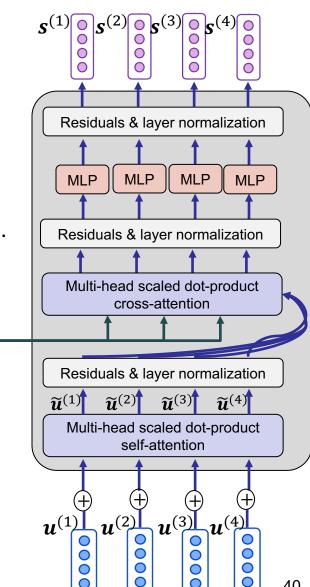
Encoder

- Transformer encoder
 - passes source embeddings $\left[e^{(1)},...,e^{(L)}\right]$ and creates contextualized source embeddings: $\left[\tilde{e}^{(1)},...,\tilde{e}^{(L)}\right]$



Decoder

- Transformer Decoder self-attention layer
 - passes target embeddings $\left[m{u}^{(1)}, ..., m{u}^{(T)} \right]$ and creates contextualized target embeddings: $\left[\widetilde{m{u}}^{(1)}, ..., \widetilde{m{u}}^{(T)} \right]$
- Transformer Decoder cross-attention layer
 - applies attention with $\left[\widetilde{\pmb{u}}^{(1)},...,\widetilde{\pmb{u}}^{(T)}\right]$ as queries. and $\left[\widetilde{\pmb{e}}^{(1)},...,\widetilde{\pmb{e}}^{(L)}\right]$ as values (and keys)
- Transformer Decoder output
 - A set of vectors $[s^{(1)}, ..., s^{(T)}]$



Decoder (cont.)

- Decoder output prediction
 - uses $[s^{(1)}, ..., s^{(T)}]$ to calculate $[\hat{z}^{(1)}, ..., \hat{z}^{(T)}]$, the vectors of the predicted probability distribution at the next position:

$$\hat{\boldsymbol{z}}^{(t)} = \operatorname{softmax}(\boldsymbol{W}\boldsymbol{s}^{(t)} + \boldsymbol{b}) \in \mathbb{R}^{|\mathbb{V}_d|}$$

- Training loss for each position t
 - NLL of the predicted probability of the next target word $y^{(t+1)}$

$$\mathcal{L}^{(t)} = -\log \hat{z}_{y^{(t+1)}}^{(t)}$$

Overall loss is the average of loss values over the target sequence:

$$\mathcal{L} = \frac{1}{T} \sum_{t=1}^{T} \mathcal{L}^{(t)}$$

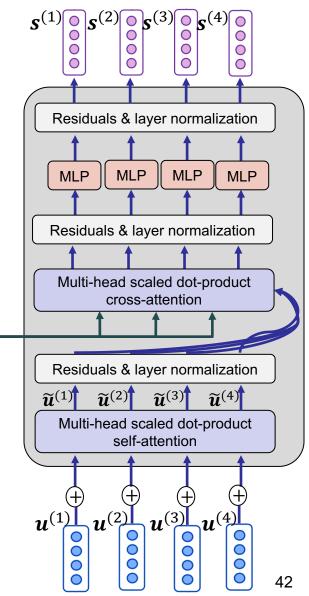
Let's revisit the decoder!

Decoder

- Transformer Decoder self-attention layer
 - passes target embeddings $\left[m{u}^{(1)}, \dots, m{u}^{(T)} \right]$ and creates contextualized target embeddings: $\left[\widetilde{m{u}}^{(1)}, \dots, \widetilde{m{u}}^{(T)} \right]$
- Transformer Decoder cross-attention layer
 - applies attention with $\left[\widetilde{\pmb{u}}^{(1)},...,\widetilde{\pmb{u}}^{(T)}\right]$ as queries, and $\left[\widetilde{\pmb{e}}^{(1)},...,\widetilde{\pmb{e}}^{(L)}\right]$ as values (and keys)
- Transformer Decoder output
 - A set of vectors $[s^{(1)}, ..., s^{(T)}]$

Problem: in self-attention part, every token looks at all other tokens, namely the previous ones <u>but also the next</u> tokens!

Every token has access to what it suppose to predict!



Masking attentions

 In seq2seq with Transformers, we mask the attentions to every future token according to the <u>self-attentions</u> table of the <u>Transformer Decoder</u>

Example

Non-normalized self-attention scores of Transformer Decoder:

attends to ... other target embeddings $u^{(1)} u^{(2)} u^{(3)} u^{(4)}$ Each target embedding $u^{(1)}$ 5 3 -4 $u^{(2)}$ -2 4 $u^{(3)}$ 2 -3 $u^{(4)}$ 3 -1

Non-normalized self-attention scores attentions masks $u^{(1)} u^{(2)} u^{(3)} u^{(4)}$ $u^{(1)} u^{(2)} u^{(3)} u^{(4)}$ $u^{(1)}$ $u^{(1)}$ 3 -4 0 $u^{(2)}$ $u^{(2)}$ 4 -2 3 0 0 $u^{(3)}$ $u^{(3)}$ -2 -3 $u^{(4)}$ $u^{(4)}$ 3 4

Applying masks to attention scores

- adds -∞ for every mask value 0
- adds 0 for every mask value 1

Final self-attention scores

 $u^{(1)} u^{(2)} u^{(3)} u^{(4)}$

$\underline{u^{(1)} u^{(2)} u^{(3)} u^{(4)}}$							
$u^{(1)}$	5	$-\infty$	-8	-8			
$u^{(2)}$	1	4	$-\infty$	-8			
$u^{(3)}$	0	-2	2	-8			
$u^{(4)}$	3	-1	1	4			

$u^{(1)}$	1.00	0.00	0.00	0.00
$u^{(2)}$	0.04	0.96	0.00	0.00
$u^{(3)}$	0.11	0.01	0.86	0.00

 $u^{(4)}$ 0.25 0.01 0.34 0.70

□ In Transformers, there are *h* times of such attention matrices. The same masking is applied to each of them.

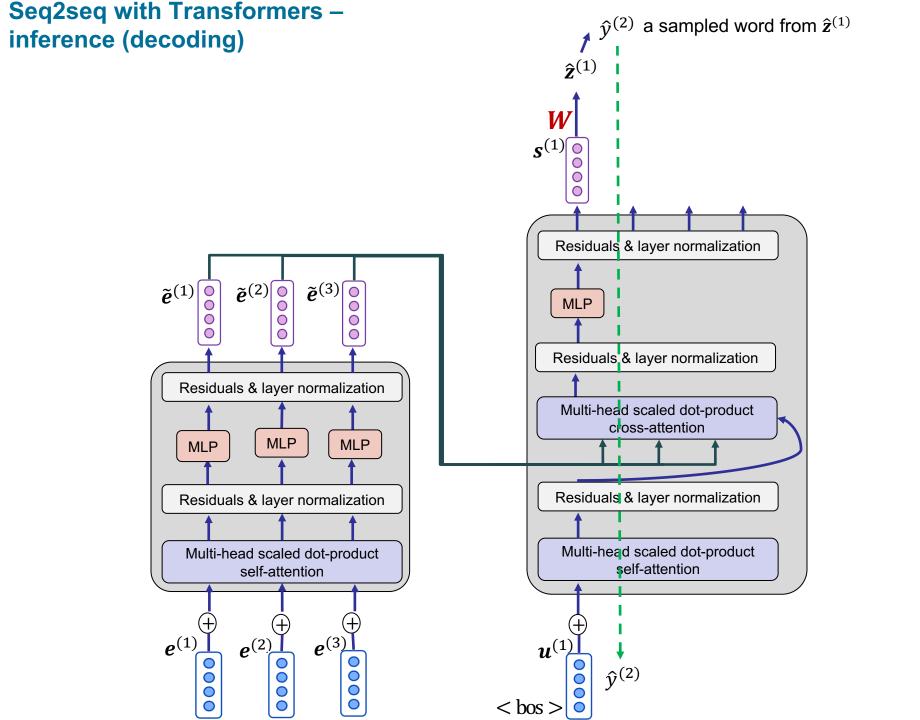
Decoder

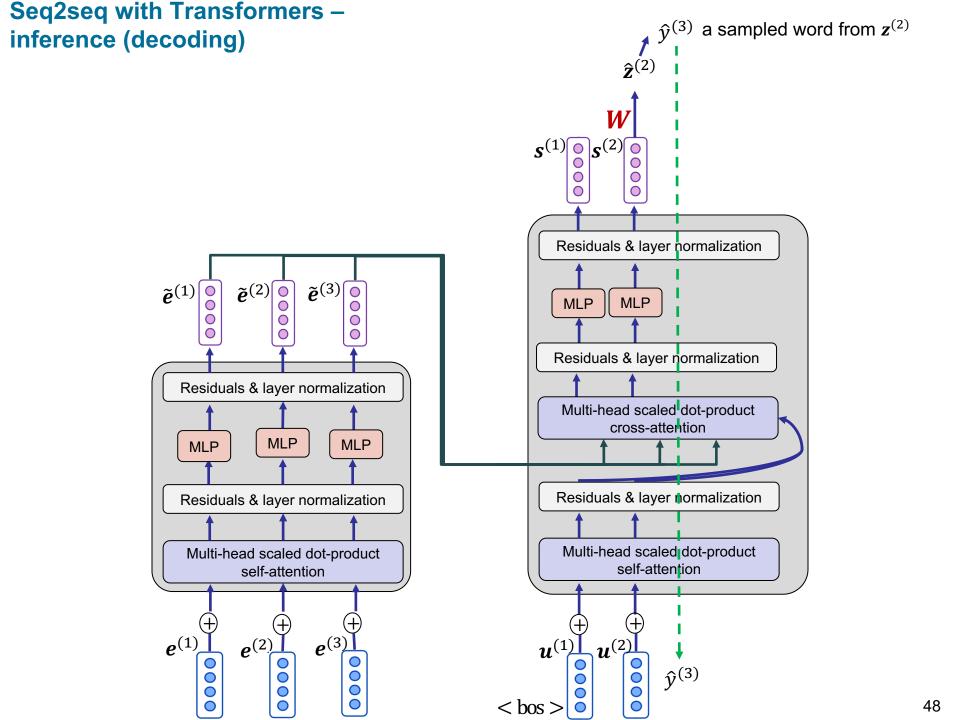
- Transformer Decoder self-attention layer
 - passes target embeddings $[u^{(1)},...,u^{(T)}]$ and creates contextualized target embeddings: $[\widetilde{u}^{(1)},...,\widetilde{u}^{(T)}]$ while masking future tokens
- Transformer Decoder cross-attention layer
 - applies attention with $\left[\widetilde{\pmb{u}}^{(1)},...,\widetilde{\pmb{u}}^{(T)}\right]$ as queries and $\left[\widetilde{\pmb{e}}^{(1)},...,\widetilde{\pmb{e}}^{(L)}\right]$ as values (and keys)
- Transformer Decoder output
 - A set of vectors $[s^{(1)}, ..., s^{(T)}]$

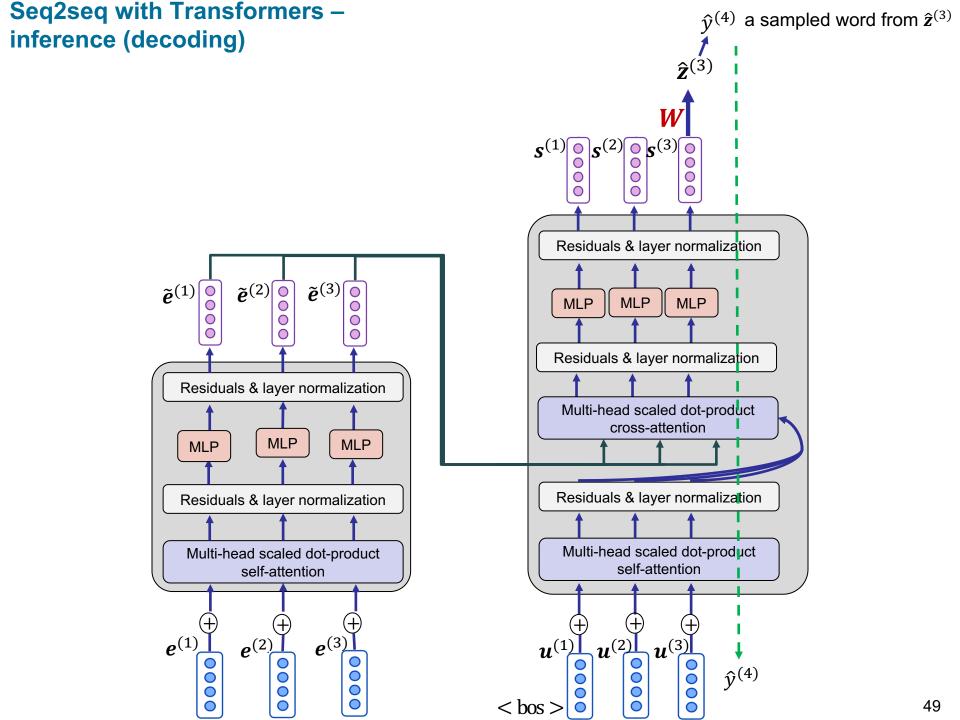
Inference (decoding)

- During inference, as in training, the encoding of input sequence is done with a single computation (non-autoregressive)
- However, as in seq2seq with RNNs, decoding of seq2seq with Transformers is done in autoregressive fashion (one token after each other):
 - Pass the 1st target token (< bos >), generate the 2nd token
 - Pass the 1st token + the 2nd generated target tokens, generate the 3rd token
 - Pass the 1st token + the 2nd and 3rd generated target tokens, generate the 4th token

- ..







Seq2seq with Transformers – code

 Each Transformer encoder/decoder is a block. You can stack them several times and make the network deep!

