Summer semester 2023
344.063 KV Special Topic:
Natural Language Processing with Deep Learning
Transformers

Navid Rekab-saz
navid.rekabsaz@ijku.at

J ¥ U Institute of
® Computational
UNIVERSITY LINZ W Perception

mailto:navid.rekabsaz@jku.at

Agenda

 Transformer encoder
 Transformer decoder

* seqg2seq with Transformers

Agenda

« Transformer encoder
 Transformer decoder

* seqg2seq with Transformers

Attentions! — recap

3

a; j is the attention score of query q; on value v;

a; is the vector of attentions of query q; over value vectors V which forms a
probability distribution

Attention Networks — recap

= Given query vector q;, an attention network uses
the attention similarity function f to assign a non-
normalized attention score &; ; to value vector v;:

aij = f(qi,v))

= Then, the attention scores over values are

turned to a probability distribution using softmax: ?
°

a; = softmax(@;) VI g =1 9
[— i) j=1%i,j — o
(O]

(©)

[

= Finally, output vector o; regarding query q; is
defined as the sum of the value vectors weighted
by their corresponding attentions:

14
0; = 2 @i, jVj
j=1

Example - recap

qlvTT= -1 0.000]
&, = q,v; =4 S . = 0.007
q.vs = 3.5 17 10.004
| g vT =9 10.989]
1 2 0.5 3 3
0, = 0.000| 4 | +0.007 [z 4+ 0.004 |—2|+ 0.989 H [—1
—3 2. 1 1 0
'2.983
0, = 0.006]

) B

Example - recap

2.983 2.719
_ i 0.006‘ 0.526
qszT: —1 "0.000] 1.007 1'2A68
~ _| qz2v2=06 _10.268 OlT 0>
a; = T — 0y =
q,v; =2 0.005)
| quZ =7 | _0727_ l?)
11
1 2] 0.5 3 3
0, =0.000| 4 |+0.268|2|+ 0.005|—-2|+ 0.727 |0 —1
—3 2] 1 1 0 |
[2.719
02 == 0526]

) B

Attention table

(ecee|(0c00)

91
q:

V1

(47)

U3

Vy

q1
q:

In the example:

V1 Vy V3 V4
0.000 [0.007 10.004 |0.989
0.000]0.268 |0.005 [(0.727
2.983 2.719
0.006] 0.526
1.007 1.268
A

011

0,

RN

vlt 1’721 531
v
=)
v
—>2 ATT
(72 \

v vy V3

Self-attention

= Self-attention is when the values are also given as the queries: Q =V

= Self-attention encodes a sequence V to a contextualized sequence V

In self-attention, each input vector v; attends to all other input vectors V, and
outputs v; as a composition of input vectors

o
(@)
V =ATT(V,V)

Output vector v; is the contextual embedding of the input vector v;

0000

0000

(0000

7]

ATT

/|

0000

0000

0000

1711 1721 1’731
a N

ATT

V = Self- ATT(V)
V

T

Self-ATT

2

Transformers

= Attention network with DL best practices!

- Originally introduced in the context of machine translation and is now widely adopted for
sequence encoding and decoding

Transformer Encoder Transformer Decoder

—————

[Residuals & layer normalization

A r t t

[MLP][MLP][MLP][MLP]

[Residuals & Iayer normalization

[_T_] [Residuals & layer normalization]
D I T

Multi-head scaled dot-product
cross-attention

A A 1

[Residuals & Iayer normalization]
Multi-head scaled dot-product

i self-attention l

Residuals & layer normalization

r 1t 1

Multi-head scaled dot-product
self-attention
4 4 4 4 J

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, tukasz Kaiser, and lllia Polosukhin. "Attention is
all you need." In Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017.

Transformer Encoder

= Transformer Encoder consists of two sub-layers:
- 18t Multi-head scaled dot-product self-attention
- 2" : Position-wise multi-layer perceptron (feed forward)

= Each sub-layer is followed by residual networks and layer
normalization
- Drop-outs are applied after each computation

a

[Residuals & layer normalization]
' 3

MLP MLP MLP

[Residuals & layer normalization]

| | 1st sub-layer
Multi-head scaled dot-product

i self-attention l

2nd sub-layer

Transformer Encoder

Let’s start from multi-head scaled dot-product self-attention:
Scaled dot-product attention

1.
2.
3.

Multi-head attention
self-attention

[Residuals & lay

er normalization]

MLP

A

MLP

[Residuals & layer normalization]

1

1

B

Multi-head sca

self-attention

led dot-product

)

Transformer Encoder

12

Transformer Encoder

Let’s start from multi-head scaled dot-product self-attention:
Scaled dot-product attention

1.
2.
3.

Multi-head attention
self-attention

[Residuals & lay

er normalization]

MLP

A

MLP

[Residuals & layer normalization]

1

1

B

Multi-head sca

self-attention

led dot-product

)

Transformer Encoder

13

Basic dot-product attention — recap

= Non-normalized attention scores:
a;j = f(qi,v))

~ T
ai;j = q;V;

- Inthis case, d, = d,

- Attention network has no parameter to
learn!

= Softmax over value vectors:

(ecee|(0c00)

a; = softmax(a;)

vV
- OUtpUt (weighted sum). O = 2|]:|1 ai,jv]-

14

Scaled dot-product attention

= Problem with basic dot-product attention:
- As d gets large, the variance of @; ; increases ...

- ... this makes softmax very peaked for some values of @; ...
- ... and hence its gradient gets smaller

Scaled dot-product attention
= Non-normalized attention scores:

T
~ q;v;

a: : =
L] \/E

= Softmax over values: a; = softmax(«;)

3

. OUtpUt: 0;, = Z|]V=|1 A jV;

Transformer Encoder

Let’s start from multi-head scaled dot-product self-attention:
1. Scaled dot-product attention

2. Multi-head attention

3. self-attention

[Residuals & layer normalization]
A

MLP MLP MLP

[Residuals & layer normalization]
1] 1
-— .- Multi-head scaled dot-product
self-attention /

Transformer Encoder

Softmax bottleneck!

Softmax is applied to non-normalized attention vectors
- Recall: softmax makes the maximum value much higher than the other
z=[1 2 5 6]— softmax(z) =[0.004 0.013 0.264 0.717]

to several other words in a sequence, each
through a specific concept

- Like the relations of a verb to its subject and object @ _____________ o 3
However, normal (single-head) attention
network aggregates all concepts in one set

In this case, due to softmax, value vectors

. (@) @) (@) @)
must compete for the attention of query 171”2 v3v4
vector — softmax bottleneck ° o o] (o

(@)
:

Common in language, a word may be related i
1

Multi-head attention

= Multi-head attention approaches softmax bottleneck by calculating
multiple sets of attentions between a query and values

Multi-head attention:

1. Transfer each query/value vector to h query/value subspaces,
each called a head

2. In each subspace, apply a normal (single-head) attention network
using the queries and values transferred to the subspace to
achieve the output vectors of that head

3. Concatenate the output vectors of all heads in respect to a query
to achieve the final output of the query

= In multi-head attention, each head (and each subspace) can
specialize on capturing a specific kind of relation

18

Multi-head attention

Attention Attention

| [}
[} [}
[} [}
1 [}
[} [}
[} [}
| q :
[}
: E | Scaled Dot-Product E : (Scaled Dot-Product !
(@) " (©) '

! :
} [}
| [}
1 [}
[} [}
1 [}
[} [}
[}

[}

B T [1T 1
1 2 2 2
vi[8)3(8)v2(8] dHHGH

- e e e wn n en e e e o e o e o

2 1 2 1
(é vilg) wife) we) e

% /1'/%, W‘R /V%, WVR/

(e0] uonuspy peay-Inp

S

19

Multi-head attention — formulation

size: 4/,

~~~~~

size: 4/,

size: 4/,

~~~~~

q; = qW; ... qf = q;W}

Transfer every query q; to h vectors, each with size 4/, :

Matrix size: dx ¢/,

Transfer every value v; to h vectors, each with size as,:

Matrix size: dx ¢/,

Calculate outputs of subspaces corresponding to q;:

o; = ATT(q;,V?)

o} = ATT(q}',V")

= Concatenate outputs of subspaces for q; as its final output:

Parameters are shown in red

size: d [«

~,
~
~.
~
~,
~
~
~

Size: dxd
This matrix linearly combines
the dimensions of the
concatenated vectors

20

Multi-head attention — graphic in original paper

)

Linear

1

Concat
AT :
Scaled Dot-Product "
Attention
Al Al Al

r-'-‘j r——d r-—-—J
Linear Linear Linear

V K Q

= Default number of heads in Transformers: h = 8
= Recall: Attentions (and Transformers) in fact have three inputs (not two), namely
queries, keys, and values.
- Keys are used to calculate attentions
- Values are used to produce outputs

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, tukasz Kaiser, and lllia Polosukhin. "Attention is
all you need." In Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017.

21

Transformer Encoder

Let’s start from multi-head scaled dot-product self-attention:

1. Scaled dot-product attention

2. Multi-head attention
3. Self-attention

[Residuals & lay

er normalization]

MLP

A

MLP

[Residuals & layer normalization]

1

1

led dot-product

[R——— Multi-head sca
self-attention

)

Transformer Encoder

22

Self-attention (recap)

= Values are the same as queries

= Each output vector is the contextual embedding of the corresponding input
vector
V; is the contextual embedding of v;

%T %T %T V = Self- ATT(V)

I e

0000
0000
0000

ATT ATT Self-ATT

1

23

Residuals

= Residual (short-cut) connection:
output = f(x) + x

= Learn in detail:
- He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian (2016). "Deep Residual Learning
for Image Recognition" . In proc. of CVPR

- Srivastava, Rupesh Kumar; Greff, Klaus; Schmidhuber, Jirgen (2015). "Highway
Networks". https://arxiv.org/pdf/1505.00387.pdf

a

% Residuals & layer normalization]
. A

k; Transformer Encoder
MLP MLP
L MLP
e 1
Residuals & layer normalization]
1] 1
Multi-head scaled dot-product

i self-attention l

Residual
connection

https://arxiv.org/pdf/1505.00387.pdf

Layer normalization

= Layer normalization changes the activations of each vector to
have mean 0 and variance 1 ...
- ... and learns two parameters per layer to shift the mean and variance

A

-
Layer norm k
N
N

Paper: https://arxiv.org/pdf/1607.06450.pdf

a

Residuals & lay

er normalization]

MLP

A

MLP MLP
1

\4[

Residuals & layer normalization]

1

1

\

Multi-head scaled dot-product

self-attention

)

Transformer Encoder

25

https://arxiv.org/pdf/1607.06450.pdf

Multi-layer perceptron on embedding

= A two-layer multi-layer perceptron (with ReLU) is applied to each
output embedding

- This layer provides the capacity for a non-linear transformation over
each (contextualized) embedding

A

[Residuals & layer normalization]

The same feed forward

L s
network is applied to e = w3 MLP MLP | [MLP
every embedding T 1 Transformer Encoder

[Residuals & layer normalization]
1] 1
Multi-head scaled dot-product

i self-attention l

X1 X2

brown lazy dog

000
000
o)
w
loooo}

Transformer Encoder — all together

= Transformer Encoder receive input embeddings and outputs the
corresponding contextualized embeddings
- Processing all inputs happen at the same time — non auto-regressive

[Residuals & layer normalization]
/')

MLP MLP MLP
T A
[Residuals & layer normalization]
1 11
Multi-head scaled dot-product

i self-attention l

€1 (3]
U O
o o o

brown lazy dog

000
00

0

w

| OOO}

Transformer Encoder — summary

= A self-attention model using

- multi-head scaled dot-product attention
- followed by the same feed-forward layer applied to each embedding
- all packed with residuals, layer norms, and dropouts

Transformers as in attentions ...
= do not have locality (position) bias
- Along-distance context has “equal opportunity”

= process all the input together with a single computation per
each layer

- Friendly with parallel computations in GPU

Learn more and study the PyTorch implementation: http:/nlp.seas.harvard.edu/2018/04/03/attention.html

28

http://nlp.seas.harvard.edu/2018/04/03/attention.html

Position embeddings

= Transformers are agnostic to the position of tokens

- A context token in long-distance has the same effect as the one in
short-distance (no locality bias)
= However, the positions of tokens in a sequence might be
informative and important in some tasks

Position embeddings —a common approach in Transformers:

= Create embeddings representing positions in a sequence, and add
the values of the position embeddings to the token embeddings at
corresponding positions
- Position embedding is usually created using a sine/cosine function
* It can also be learned end-to-end with the model parameters

- Using position embeddings, the same token at different positions of a
sequence will have different final representations

29

Position embeddings — examples

An example of POSITIONAL .- B » . 1 » |
embeddings with ENCODING

four dimensions: + + +

EMBEDDINGS x: [] 1] x2 [xs IR

Position embedding
for location O

N Values from -1
Position (dark) to +1 (light)

embeddings

-08

Position embedding |

for location 20 °veeRNAnee BB RRBESS g e LR N AT Y BY S8R B8 8RAS HRNA AR AR ARARERARABA 50538 BERREEAARAI02555559989895083

420
P
4a
4
445
450
45¢
460
465
48
48
490
495
500
501
510

Dimensions (512)

Source: http://jalammar.qgithub.io/illustrated-transformer/ 30

http://jalammar.github.io/illustrated-transformer/

Transformer Encoder with position embedding

a

0000
0000
0000

[Residuals & layer normalization]

[Residuals & layer normalization]
1] 1
Multi-head scaled dot-product

i self-attention l

0.00 0.84 0.91
0.00 0.00 0.00
1.00 0.54 —-0.4
1.00 1 1
+ + +
° o °
€1 lo| €2/0| €30
@ o ®
@ o °

brown lazy dog

Transformer Encoder with position embedding

—
& 1 =
~>| Add & Norm)
Feed
Forward
!
Nx ~»| Add & Norm |
Multi-Head
Attention
R=g——p
_ J
Positional D
Encoding
Input
Embedding
Inputs

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, tukasz Kaiser, and lllia Polosukhin. "Attention is
all you need." In Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017.

Agenda

 Transformer encoder
« Transformer decoder

* seqg2seq with Transformers

Transformer Decoder

Transformer Decoder consists of three sub-layers: (f f —t

Residuals & layer normalization
t i i T T T T sub?ir; er
= 1st: Masked multi-head self-attention (e (e (M [mie) y
- Exactly like Transformer Encoder but also with a
masking functionality | Residuals & layer normalization |
1 t 1 »
. . Multi-head scaled dlot-product bl
= 2 : Multi-head cross attention cross-attention sub-iayer
- Values are given from outside
Like from the outputs of a Transformer Encoder Residuals & layer normalization
- Queries are the outputs of the 15t sub-layer t t t t 1st
Multi-head scaled dot-product sub-layer

K self-attention /
= 31 : Position-wise multi-layer perceptron T T T T
- Exactly like Transformer Encoder

34

Transformer Decoder with position embedding

7 1
| Add & Norm h\
Feed
Forward
—
| Add & Norm Je=
Multi-Head
Attention
Y = Y, N
|
LAdd & Norm Je=
Masked
Multi-Head
Attention
R
. —
@ Positional
Encoding
Output
Embedding
Outputs

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, tukasz Kaiser, and lllia Polosukhin. "Attention is
all you need." In Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017.

Agenda

 Transformer encoder
 Transformer decoder

« seq2seq with Transformers

Sequence-to-sequence modeling — recap

= Given the source sequence X = {x(W,x@, . x@®}
= generate the target sequence Y = {y(1), y(2) ()

= A seg2seq model estimates the conditional probability:
P(Y|X)
= and at inference time, it generates a new sequence Y™ such that:

Y* = argmax P(Y|X)
Y

37

Seq2seq with Transformers —

training

2: predicted probability

distribution of the next target word

Mﬂ 31 3@ 33 3@

a z00

wl w WI w

D o]s)ols3) 4

R HEHRHEE
O @) o o
O @) o o

1

Residuals & layer normalization

r t t

[MLP] MLP][MLP][MLP]

Residuals & layer normalization]

t t 1t 1

Multi-head scaled dot-product
cross-attention

A 3 4

s(D[o| g@|o] gB)o
elo| €le| €0
Contextualized ~ |©) o
source d h © ©
embeddings 1 ~
[Residuals & layer normalization]
A
Transformer MLP MLP MLP
Encoder
1 7
[Residuals & layer normalization] i
1 Contextualized
source
Multi-head scaled dot-product embeddings
k self-attention / as values
Position
embedding *1 b GP (-P
e @l oG
(@) (@) @)
(@) (@) (@)
(@) (@) (@)
(@) (@) (@)

Residuals & layer normalization

<-4

Transformer
Decoder

| Contextualized

target
embeddings

as queries

af a@f adf aef <
Multi-head scaled dot-product
self-attention

)

'\ '\ '\ '\
(1)6% (2 (34,4
Yt e ()" (o
o o o) o)
o O o) o)
e} © o S

Contextualized
target
embeddings

38

Seq2seq with Transformers — training

= Two sets of vocabularies
-V, is the set of vocabularies for source sequences
-V, is the set of vocabularies for target sequences
= Source sequence X and target sequence Y

- Both are typically started/ended with < bos >/< eos > 5(1) é(Z)D é(S)D
(@)
(@)

0000
0000

Encoder - ¢
| Transformer encoder [Residuals & layer normalization]
A
- passes source embeddings [e™, ..., 1] and D
. . MLP
creates contextualized source embeddings: f Y

[é(l), . é(L)]

[Residuals & layer normalization]
1] 1
Multi-head scaled dot-product

[self-attention
\& —/

Ger 3
e @ ¢G
(@) (@)
(@) (@)
(@) (@)
(@) (@)
39

—+

0000

Seq2seq with Transformers — training

Decoder S(1)S(2)(3)(4)
= Transformer Decoder self-attention layer ol 18] ¢
- passes target embeddings [u®, ..., u("] and o~ —t—t
creates contextualized target embeddings: [Re8|duals&Iayernormalization]
[a®, ..., u™)] t
= Transformer Decoder cross-attention layer [JLwp (e | e
- applies attention with [%®), ..., %("] as queries. | [Resiauals & layer nomalization |
and [e), ..., 8] as values (and keys) 1t 1 1
= Transformer Decoder output e e o 00Ut

A 3 A

- Aset of vectors [s®), ..., s(T]

Residuals & layer normalization

i a@f af et
Multi-head scaled dot-product
self-attention

4 4 4

N 3

(1) (2 3 4
u u i u(
(@)
(@)

©] 40

0000
000

Incomplete version!

Seq2seq with Transformers — training

Decoder (cont.)

= Decoder output prediction

- uses [sW, ..., s(D] to calculate [2V, ..., 2(T], the vectors of the predicted
probability distribution at the next position:

7(®) = softmax(Ws(t) + b) e R!Val

= Training loss for each position t
- NLL of the predicted probability of the next target word y(t+1)

LO = — log ZA)(,?tH)

= Opverall loss is the average of loss values over the target sequence:

1 &
L=— ()
TZL
t=1

41

Let’s revisit the decoder!

Decoder

Transformer Decoder se

- passes target embeddings [u, ...,

[f-attention layer
uM] and

creates contextualized target embeddings:

[ﬁ(l)’ . ’ii(T)]

Transformer Decoder cross-attention layer

- applies attention with [a), ...,

and [e®), ...,8M)] as

values (and keys)

Transformer Decoder output

- A set of vectors [s(, ...,

s™)

: Problem: in self-attention part, every token looks at all
I other tokens, namely the previous ones but also the next

tokens!

Every token has access to what

it suppose to predict!

Incomplete version!

#(T] as queries,

(4)

s<1> S(z>(3>
@)
@)

=
(5000

[Re8|duals&layer normalization]

1
[mep | mep) e |

[Residuals & layer normalization]

t t 1t

Multi-head scaled dot-product

cross-attention
A

<

LP]

A

Residuals & layer normalization

i a@f af et
Multi-head scaled dot-product
self-attention

~

'\ '\ '\ '\
(1)6% (2 (36# (4
ot e (" (o
o) o o) o
o O o) o)
e} © o S

42

Masking attentions

= In seq2seq with Transformers, we mask the attentions to every
future token according to the self-attentions table of the
Transformer Decoder

Example
= Non-normalized self-attention scores of Transformer Decoder:

attends to ...
other target embeddings

1D 4@ 43 4@

Each target embedding ,(D| 5 | 3 | 1 | -4

u@®| 114|213
u®l ol 2] 2|-3
u®| 3 (-1]1]|4

Non-normalized self-attention scores attentions masks

u® 4@ 4B y® 1D U@ 4@ ¢y ®
u®| 53|14 u®l 1 lo]o0]|o0
u@| 14|23 u®|111]0]0
u®|o|2|2]-3 u®l 111110
u®| 3111114 u®| 1111

Applying masks to attention scores
adds —oo for every mask value 0

adds 0 for every mask value 1 Final self-attention scores

u® 4@ 43 4@ u® 1@ 43 4u®)

uD | 5 |—oo |—o0 |—00 | softmax U | 1.00 | 0.00 | 0.00 | 0.00

u@| 1| 4 |—o0 |- - u(?) | 0.04 | 0.96 | 0.00 | 0.00
u® 0l 2| 2 |- u®) | 011001086 | 0.00
u®l 311114 u® 025001034070

= |n Transformers, there are h times of such attention matrices. The same masking is applied
to each of them. 44

Seq2seq with Transformers — training

Decoder
= Transformer Decoder self-attention layer

- passes target embeddings [uY, ..., u™] and creates

contextualized target embeddings: [#, ..., %] while masking
future tokens

= Transformer Decoder cross-attention layer

- applies attention with [&, ..., %("] as queries and [e), ..., &!]
as values (and keys)
= Transformer Decoder output

- A set of vectors [s), ..., s(T]

Complete version!

45

Inference (decoding)

= During inference, as in training, the encoding of input sequence is
done with a single computation (non-autoregressive)

= However, as in seg2seq with RNNs, decoding of seg2seq with
Transformers is done in autoregressive fashion (one token after each
other):
- Pass the 15t target token (< bos >), generate the 2" token
- Pass the 15t token + the 2" generated target tokens, generate the 3™ token
- Pass the 1sttoken + the 2" and 3" generated target tokens, generate the 4t token

46

Seq2seq with Transformers —

; : 7(2) a sampled word from z(!)
inference (decoding) y P z

|
7(1)

|14
(1
S
o

—

[Residual

1

layer normalization

|
I
|
|
|
|
|
I
|
|
i

e

(L]
~
w
N/

MLP

A

0000
0000
0000

»

3

[Residuals & layer normalization]

[Residuals & layer normalization] |
1 { Multi-hedd scaled dot-product

cfoss-attention

MLP MLP MLP 7 | Y 1
]
1 P—
[Residuals & layer normalization] [Residuald & layer normalization]
a I
r

Multi-head scaled dot-product Multi-hegd scaled dot-product

i self-attention l \[self-attention } y

4 1
I

@ |
e e(z)(f e ol

uC
I I 37(2)
< bos >|©

|

0000

000

0000
000

Seq2seq with Transformers —

' ; 53 @
inference (decoding))‘ §(®) a sampled word from z

14

s<1> 0 S(z>

ReS|duaIs & layer normalization]

- Pt

[MLP][MLP]

A

—P»> OO0

~

e

o

0000
0000
0000

»

3

[Residuals & layer normalization]

[Residuals & layer normalization] I
1 { Multi-head scaled'dot-product

cross-attehtion
MLP MLP MLP A W y

T 1
[Residuals & layer normalization] Residuals & layer mormalization

f t t |

Multi-head scaled dot-product Multi-head scaledjdot-product

i self-attention l \[self-attention } y

4 4]
|
0] GP (3) S
(2) (1 (2
’ o ° - ’ o “ 1" s j(S)
(@) @) (@) 8 8 y
© © © < bos >| @ o

Seq2seq with Transformers — 9@ a sampled word from 2
inference (decoding) 7
2(3)

s<1> S(z>(3>
@)
@)
@)

—

[ReS|duaIs&Iayer normalization]

e® T T

[mep | mep [mep | E

Q00 O |mmmpp

~

e

A A A

0000
0000
0000

»

3

[Residuals & layer normalization]

[Residuals & layer normalization] [

1 Multi-head scaled dot-prodllct
cross-attention
MLP MLP MLP A A y |

T |
[Residuals & layer normalization] Residuals & layer normalizattion

I t t t |

Multi-head scaled dot-product Multi-head scaled dot-prodpct
U self-attention self-attention |
=/ k 4 4 4 l
I
{ ool 9.
e e(z) 3(3) uLl @l L6 !
o) o 6) o) o 37 4)
o o © o @))
© © © < bos >| @ © O 49

Seq2seq with Transformers — code

= Each Transformer encoder/decoder is
a block. You can stack them several
times and make the network deep!

CLASS torxch.nn.TransformerEncoder(encoder_layer, num_layers, norm=None) [SOURCE]
CLASS torch.nn.TransformerEncoderlLayer(d_model, nhead, S—
dim_feedforward=2048, dropout=0.1, activation="relu") :]

CLASS torch.nn.TransformerDecoder(decoder_layer, num_layers, norm=None) [SOURCE]
CLASS torch.nn.TransformerDecoderlLayer(d_model, nhead, S —
dim_feedforward=2048, dropout=0.1, activation="relu") :]

forward(tgt, memory, tgt_mask=None, memory_mask=None,
(tg e - [SOURCE]

tgt_key_padding_mask=None, memory_key_padding_mask=None)

Output

Probabilities

[Linear |

g N\
Add & Norm
Feed

Forward
4 | ' (CAdd & Norm K
Add & Norm Multi-Head
Feed Attention
Forward) ¥ Nx
—
Nix Add & Norm
f->| Add & Norm | Maoied
Multi-Head Multi-Head
Attention Attention
A_%t A §)

(N m— J U)
Positional D ¢ Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, tukasz Kaiser, and lllia Polosukhin. "Attention is
all you need." In Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017.

50

