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Attention Networks

Attention is a deep learning architecture ...
- to obtain a composed output embedding o ...
- from a set (matrix) of input values V ...
- based on a given query embedding q

General form of an attention network:
0= ATT(q, V)

If a set/matrix of queries Q is given, the output
will become a set/matrix O :

0 = ATT(Q,V)

- where each output vector belongs to its respective
query vector
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We sometime say, each query vector q “attends” to value vectors
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Attention Networks — definition

= Given a matrix of values V and a matrix of queries Q, for each
query vector g € Q, an attention network ...

- first assigns an attention score to each value vectorv e V
based on the similarity of q to v,...

- then turns the attention scores to a probability distribution of
attentions over value vectors, ...

- and finally uses the attentions to calculate the weighted sum of
the value vectors as the corresponding output o of the query
vector q

= The output of attention networks can be viewed as a weighted
aggregation of the value vectors, where the query (through
attentions) defines the proportion of the contribution of each value
vector.
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Attention Networks — formulation

= Given query vector q;, an attention network uses
the attention similarity function f to assign a non-
normalized attention score &; ; to value vector v;:

aij = f(qi,v))

= Then, the attention scores over values are

turned to a probability distribution using softmax: ?
°

a; = softmax(@;) VI g =1 9
[ — i) j=1%i,j — o
(O]
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[

= Finally, output vector o; regarding query q; is
defined as the sum of the value vectors weighted
by their corresponding attentions:
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Attention — first implementation

Basic dot-product attention
= Non-normalized attention scores:

a;j = f(qiv))

~ T
ai;j = q;V;

- Inthis case, d, = d,

- Attention network has no parameter to
learn!

= Softmax over value vectors:

(ecee|(0c00)

a; = softmax(a;)

vV
- OUtpUt (weighted sum). O = lezll ai,jv]-
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Example
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Example
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Attention — other implementations

Multiplicative attention
= Non-normalized attention scores:

aij = f(qi,v))

~ T
a;j = qiWv;

- W is a matrix of parameter

- similarity of query to value is defined as
a linear function

= Softmax over values:

(ecee|(0c00)

a; = softmax(a;)

vV
- OUtpUt (weighted sum). O = 2|]:|1 ai,jv]-
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Attention — other implementations

Additive attention

= Non-normalized attention scores:
a;j = f(qi,v))
&i,j = uTtanh(qiwl +vj WZ)

- Wy, W,, and u are model parameters

- similarity of query to value is defined as
a non-linear function

= Softmax over values:

(ecee|(0c00)

a; = softmax(a;)

vV
- OUtpUt (weighted sum). O = 2|]:|1 ai,jv]-
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Attention — summary

= Attention is a way to define the distribution of focus on inputs

based on a query, and create a compositional embedding of
inputs

= Attention networks define an attention distribution over inputs
and calculate their weighted sum

= The original definition of attention network has two inputs: key
vectors K, and value vectors V

- Key vectors are used to calculate attentions

- and output is the weighted sum of value vectors

- In practice, in most cases K = V.

- In this course, we use our slightly simplified definition

17



Agenda

* Attention Networks
* Introduction to Machine Translation

 Attention applications
« Seq2seq with Attention
* Hierarchical document classification



Machine Translation (MT)

= Machine Translation is the task of translating a sentence X
from source language to sentence Y in target language

= A long-history (since 1950)

Early systems were mostly rule-based

= Challenges:

Common sense

|dioms!

Typological differences between the source and target language
Alignment

Low-resource language pairs
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Statistical Machine Translation (SMT)

= Statistical Machine Translation (1990-2010) learns a probabilistic
model using large amount of parallel data

= The model aims to find the best target language sentence Y*, given
the source language sentence X:

Y* = argmax P(Y|X)
Y

= SMT uses Bayes Rule to split this probability into two components
that can be learnt separately:

= argmax P(X|Y)P(Y)

_—/

Translation Model
The statistical model that
defines how words and phrases
should be translated
(learnt from parallel data)

Language Model
The statistical model that tells us
how to write good sentences in
the target language
(learnt from monolingual data)

https://en.wikipedia.org/wiki/Rosetta Stone
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Learning Translation model

= To learn the Translation model P(Y|X), we need to break X
and Y down to aligned words and phrases:

Morgen| | fliege| |ich nach Kanada] |zur Konferenz

! Dy

Tomorrow| | I| |will fly to the conference| |in Canada

= To this end, the alignment latent variable a is added to the
formulation of Translation model:

P(X,al|Y)

= Alignment ...
- is a latent variable — is not explicitly defined in the data!

- defines the correspondence between particular words/phrases in the
translation sentence pair



Alignment!
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Examples originally from: “The Mathematics of Statistical Machine Translation: Parameter Estimation", Brown et al, 1993. 22
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SMT - summary

= Defining alignment is complex!

- The Translation model should jointly estimate distributions of
both variables (X and a)

= SMT systems ...

- were extremely complex with lots of features engineering

- required extra resources like dictionaries and mapping tables
between phrases and words

- required “special attention” for each language pair and lots of
human efforts
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MT — Evaluation

= BLEU (Bilingual Evaluation Understudy)

= BLEU computes a similarity score between the
machine-written translation to one or several human-
written translation(s), based on:
- n-gram precision (usually for 1, 2, 3 and 4-grams)
- plus a penalty for too-short machine translations

= BLEU is precision-based, while ROUGE is recall-based

Details of how to calculate BLEU: hitps://www.coursera.ora/lecture/nlp-sequence-models/bleu-score-

optional-kC2HD
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Neural Machine Translation (NMT)

= Given the source language sentence X and target language
sentence Y, NMT uses seq2seq models to calculate the
conditional language model:

P(Y|X)
- A language model of the target language
- Conditioned on the source language

= In contrast to SMT, no need for pre-defined alignments! £

= We can simply use a seg2seq with two RNNs
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Seg2seq with two RNNs (recap)

ENCODER PECODER

z(: predicted probability distribution of
the next target word, given the source
sequence and previous target words

Mﬂ 2

= wl

hm@ h(Z)@ h(3)@ h(4)@ 5(1)@ s<2>@ S(S)@

e(1) 6(2) e(3) 3(4) u(l) u?) §
U U
x o) ME) y D) y(z) y(B)
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Seq2seq with two RNNs - training (recap)

Encoder: read source

we are here

Source: "4 suaen KOTHO Ha MaTe <eos> Target; I saw a cat on a mat <eos>

"T" "saw" "cat” "on" "mat”

Look here for more: https://lena-voita.qgithub.io/nlp course/seq2seq and attention.html
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Seq2seq — decoding / beam search (recap)

<bos>

Start with the begin of sentence token or with an empty sequence

Look here for more: https://lena-voita.qgithub.io/nlp course/seq2seq and attention.html
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Sentence-level semantic representations (recap)

= Two-dimensional projection of the last hidden states h(%) of RNN,,
obtained from different phrases

151

al OT was given a card by her in the garden
3 © Mary admires John 10f o Inthe garden, she gave me a card

O :
2t O Mary is in love with John | She gave me a card in the garden
1 -
0 0

h o
0 John admires Mary Mary respects John

. . i © She was gi db inth d
2t ©Johnis in love with Mary . e was given a card by me in the garden
In the garden, I gave her a card
-3 -10
_4._
-15} .
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e s 4 =2 o > 4 6 8 10 s “10 s 0 5 10 15 20

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to Sequence Learning with Neural Networks." Advances in Neural Information Processing Systems 27 33
(2014): 3104-3112.



Bottleneck problem in seq2seq with two RNNs

ENCODER PECODER

All information of source sequence
must be embedded in the last hidden
state. Information bottleneck!

hm@ h(Z)@ h(3)@ h(4)@ 5(1)@ s<2>@ S(S)@

(1) (z) (3) 3(4) u(1)§ u(2)§
U U

x x(z) x(3) y D) y(z) y(B)
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Seg2seq + Attention

= |t can be useful, if we allow decoder the direct access to all
elements of source sequence,

- Decoder can decide on which element of source sequence, it wants to
put attention

= Attention is a solution to the bottleneck problem

=  Seqg2seq with attention ...

- adds an attention network to the architecture of basic seq2seq (two
RNNSs)

- At each time step, decoder uses the attention network to attend to all
contextualized vectors of the source sequence

- Training and inference (decoding) processes are the same as basic
seq2seq

Bahdanau, Dzmitry, Kyung Hyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate."
3rd International Conference on Learning Representations, ICLR. 2015.
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Seq2seq with attention
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Seq2seq with attention
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Seq2seq with attention
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Seqg2seq with attention — formulation

= Two sets of vocabularies
-V, is the set of vocabularies for source sequences
-V, is the set of vocabularies for target sequences

Encoder
= From words to word embeddings:
- Encoder embeddings of source words (V,) —» E
- Embedding of the source word x®) (at time step 1) — e®

= Encoder RNN:
h® = RNN, (A1, e®)

Parameters are shown in red

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to Sequence Learning with Neural Networks." Advances in Neural Information Processing Systems 27
(2014): 3104-3112.
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Seqg2seq with attention — formulation

Decoder

= From words to word embeddings:
- Decoder embeddings of target words (V;) at input —» U
- Embedding of the target word y® at time step t — u®

= Decoder RNN: s® = RNN,(s¢ D u®)

- where the initial hidden state of the decoder RNN is set to the
last hidden state of the encoder RNN:  s(® = p({)

Parameters are shown in red
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Seqg2seq with attention — formulation

Decoder (cont.)
= Attention context vector

h*® = ATT(s®, [nD, ..., kD))

For instance, if ATT is a “basic dot-product attention”, this is done by:

- First calculating non-normalized attentions:
T
CYl(t) = S(t) hl

- Then, normalizing the attentions:

a® = softmax(a@®)

- and finally calculating the weighted sum of encoder hidden states

L
RO =
=1

Parameters are shown in red
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Seqg2seq with attention — formulation

Decoder (cont.)
= Decoder output prediction
- Predicted probability distribution of words at the next time step:

20 = softmax(W[s®; h*7] + b) € RIVdl

[; ] denotes the concatenation of two vectors

- Probability of the next target word (at time step t + 1):
P(y@D|x,y@, . yED), y<t>)=ZA;t(>t+l)

Parameters are shown in red
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Alignment in NMT (seq2seq with attention)

= Attention automatically learns (nearly) alignment

English to French translation
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Bahdanau et al. [2015]
Try more here: https:/distill.pub/2016/augmented-rnns/#attentional-interfaces 43
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Seq2seq with attention — summary

= Attention on source sequence facilitates the focus on
relevant words and a better flow of information

= Adding the attention network also helps avoiding vanishing
gradient problem by providing a shortcut to faraway states
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Compositional embeddings with Attention networks

= Attention is used to create a compositional embedding of
value vectors according to a query

- as we already saw in seq2seq models ...
- but it can also in tasks like sequence classification
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0000
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Hierarchical document classification with attention

= Document classification with attention

- An attention network is applied to word embeddings as values
(inputs) to compose a document vector (output)

- Document embedding is then used as features for classification

- The query of the attention network is a randomly initialized
parameter vector, whose weights are trained end-to-end with
the model

= Hierarchical document classification
- Split the document into sentences

- Use a word-level attention to create a sentence embedding from
the word embeddings of each sentence

- Use a sentence-level attention to create the document
embedding from the sentence embeddings

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016, June). Hierarchical attention networks for document classification.
In Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies



Architecture
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Architecture
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Examples

GT: 0 Prediction: 0
terrible value
ordered pasta entree

GT: 4 Prediction: 4
pork belly = delicious

scallops ?

i1 do n’t . $ 1695 good taste but size was an
even : .

e appetizer size

scallops , and these were a-m-a-z-i-n-g
fun and tasty cocktails

next time 1 'm in phoenix , 1 will go
back here

highly recommend

no salad , no bread no vegetable

this was
our and tasty cocktails

our second visit
i will not go back

Figure 5: Documents from Yelp 2013. Label 4 means star 5, label 0 means star 1.

https://www.aclweb.org/anthology/N16-1174.pdf 49
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Example

GT: 1 Prediction: 1

why does zebras have stripes ? GT: 4P rediction: 4

. : how do 1 get rid of all the old web
what is the purpose or those stripes ?

i searches 1 have on my web browser ?
who do they serve the zebras in the

wild life ?
this provides camouflage -  predator

i want to clean up my web browser

go to tools > options

2 13

then click “ delete history and

vision is such that it is usually difficult

clean up tempor internet files
for them to see complex patterns P e

Figure 6: Documents from Yahoo Answers. Label 1 denotes Science and Mathematics and label 4 denotes Computers and Internet.

https://www.aclweb.org/anthology/N16-1174.pdf 50
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Sequence classification with attention — summary

= Attention can be used to compose a sequence vector from its token
vectors

- In this case, the query vector is a set of parameters that will be trained
with other model parameters

- The composed vector is in fact the weighted average of the token
vectors based on attention weights

= Attention provides some interpretability

- Looking at attention distributions, one may assume what the model is
focusing on

- We should however be careful about directly taking attention

distributions as model explanations (particularly in Transformers)!
« Jain, Sarthak, and Byron C. Wallace. "Attention is not Explanation." In proc. of NAACL-HTL 2019.
https://www.aclweb.org/anthology/N19-1357.pdf

* Wiegreffe, Sarah, and Yuval Pinter. "Attention is not not Explanation." In proc. of EMNLP-IJCNLP.
2019. https://www.aclweb.org/anthology/D19-1002/
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