Summer semester 2023

344.063 KV Special Topic: Natural Language Processing with Deep Learning Attention Networks

Navid Rekab-saz navid.rekabsaz@jku.at

Institute of Computational Perception

Agenda

- Attention Networks
- Introduction to Machine Translation
- Attention applications
 - Seq2seq with Attention
 - Hierarchical document classification

Agenda

Attention Networks

- Introduction to Machine Translation
- Attention applications
 - Seq2seq with Attention
 - Hierarchical document classification

- Attention is a deep learning architecture ...
 - to obtain a composed <u>output</u> embedding *o* ...
 - from a set (matrix) of input values V ...
 - based on a given <u>query</u> embedding q
- General form of an attention network:

o = ATT(**q**, **V**)

 If a set/matrix of queries *Q* is given, the output will become a set/matrix *O*:

$$\boldsymbol{O} = \operatorname{ATT}(\boldsymbol{Q}, \boldsymbol{V})$$

 where each output vector belongs to its respective query vector

٠

We sometime say, each query vector q "attends" to value vectors

 $\alpha_{i,j}$ is the attention of query q_i on value v_j

 $\alpha_{i,j}$ is the attention of query q_i on value v_j

 $\alpha_{i,j}$ is the attention of query q_i on value v_j

Attention Networks – definition

- Given a matrix of values V and a matrix of queries Q, for each query vector $q \in Q$, an **attention network** ...
 - first assigns an attention score to each value vector $v \in V$ based on the similarity of q to v,...
 - then turns the attention scores to a probability distribution of attentions over value vectors, ...
 - and finally uses the attentions to calculate the weighted sum of the value vectors as the corresponding output *o* of the query vector *q*
- The output of attention networks can be viewed as a weighted aggregation of the value vectors, where the query (through attentions) defines the proportion of the contribution of each value vector.

Attention Networks – formulation

 Given query vector *q_i*, an attention network uses the attention similarity function *f* to assign a nonnormalized attention score *α̃_{i,j}* to value vector *v_j*:

$$\tilde{\alpha}_{i,j} = f(\boldsymbol{q}_i, \boldsymbol{v}_j)$$

 Then, the attention scores over values are turned to a probability distribution using softmax:

$$\boldsymbol{\alpha}_i = \operatorname{softmax}(\widetilde{\boldsymbol{\alpha}}_i), \qquad \sum_{j=1}^{|\boldsymbol{V}|} \alpha_{i,j} = 1$$

 Finally, output vector *o_i* regarding query *q_i* is defined as the sum of the value vectors weighted by their corresponding attentions:

$$\boldsymbol{o}_i = \sum_{j=1}^{|\boldsymbol{V}|} \alpha_{i,j} \boldsymbol{v}_j$$

Attention – first implementation

Basic dot-product attention

Non-normalized attention scores:

$$\widetilde{\alpha}_{i,j} = f(\boldsymbol{q}_i, \boldsymbol{v}_j)$$
$$\widetilde{\alpha}_{i,j} = \boldsymbol{q}_i \boldsymbol{v}_i^{\mathrm{T}}$$

- In this case, $d_q = d_v$
- Attention network has no parameter to learn!
- Softmax over value vectors:

 $\boldsymbol{\alpha}_i = \operatorname{softmax}(\widetilde{\boldsymbol{\alpha}}_i)$

• Output (weighted sum): $\boldsymbol{o}_i = \sum_{j=1}^{|\boldsymbol{V}|} \alpha_{i,j} \boldsymbol{v}_j$

Example

$$\widetilde{\alpha}_{1} = \begin{bmatrix} q_{1}v_{1}^{T} = -1 \\ q_{1}v_{2}^{T} = 4 \\ q_{1}v_{3}^{T} = 3.5 \\ q_{1}v_{4}^{T} = 9 \end{bmatrix} \rightarrow \alpha_{1} = \begin{bmatrix} 0.000 \\ 0.007 \\ 0.004 \\ 0.989 \end{bmatrix}$$

$$o_{1} = 0.000 \begin{bmatrix} 1 \\ 4 \\ -3 \end{bmatrix} + 0.007 \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} + 0.004 \begin{bmatrix} 0.5 \\ -2 \\ 1 \end{bmatrix} + 0.989 \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix}$$

$$v_{1} \quad v_{2} \quad v_{3} \quad v_{4} \\ \begin{bmatrix} 1 \\ 4 \\ -3 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 0.5 \\ -2 \\ 1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$

Example

$$\widetilde{\alpha}_{2} = \begin{bmatrix} q_{2}v_{1}^{T} = -1 \\ q_{2}v_{2}^{T} = 6 \\ q_{2}v_{3}^{T} = 2 \\ q_{2}v_{4}^{T} = 7 \end{bmatrix} \rightarrow \alpha_{2} = \begin{bmatrix} 0.000 \\ 0.268 \\ 0.005 \\ 0.727 \end{bmatrix}$$

$$o_{2} = 0.000 \begin{bmatrix} 1 \\ 4 \\ -3 \end{bmatrix} + 0.268 \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} + 0.005 \begin{bmatrix} 0.5 \\ -2 \\ 1 \end{bmatrix} + 0.727 \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$

$$\left[\begin{array}{c} 2 \\ 0 \\ 1 \end{bmatrix} \\ \left[\begin{array}{c} 3 \\ -1 \\ 0 \end{bmatrix} \right] = \begin{bmatrix} 0.000 \\ 0.268 \\ 0.007 \\ 0.000 \\ 0.007$$

Attention – other implementations

Multiplicative attention

Non-normalized attention scores:

$$\widetilde{\alpha}_{i,j} = f(\boldsymbol{q}_i, \boldsymbol{v}_j)$$
$$\widetilde{\alpha}_{i,j} = \boldsymbol{q}_i \boldsymbol{W} \boldsymbol{v}_i^{\mathrm{T}}$$

- W is a matrix of parameter
- similarity of query to value is defined as a linear function
- Softmax over values:

 $\boldsymbol{\alpha}_i = \operatorname{softmax}(\widetilde{\boldsymbol{\alpha}}_i)$

• Output (weighted sum): $\boldsymbol{o}_i = \sum_{j=1}^{|\boldsymbol{V}|} \alpha_{i,j} \boldsymbol{v}_j$

Attention – other implementations

Additive attention

Non-normalized attention scores:

 $\widetilde{\alpha}_{i,j} = f(\boldsymbol{q}_i, \boldsymbol{v}_j)$ $\widetilde{\alpha}_{i,j} = \boldsymbol{u}^{\mathrm{T}} \tanh(\boldsymbol{q}_i \boldsymbol{W}_1 + \boldsymbol{v}_j \boldsymbol{W}_2)$

- W_1 , W_2 , and u are model parameters
- similarity of query to value is defined as a non-linear function
- Softmax over values:

 $\boldsymbol{\alpha}_i = \operatorname{softmax}(\widetilde{\boldsymbol{\alpha}}_i)$

• Output (weighted sum): $\boldsymbol{o}_i = \sum_{j=1}^{|\boldsymbol{V}|} \alpha_{i,j} \boldsymbol{v}_j$

Attention – summary

- Attention is a way to define the distribution of focus on inputs based on a query, and create a compositional embedding of inputs
- Attention networks define an attention distribution over inputs and calculate their weighted sum
- The original definition of attention network has two inputs: key vectors *K*, and value vectors *V*
 - Key vectors are used to calculate attentions
 - and output is the weighted sum of <u>value vectors</u>
 - In practice, in most cases K = V.
 - In this course, we use our slightly simplified definition

- Attention Networks
- Introduction to Machine Translation
- Attention applications
 - Seq2seq with Attention
 - Hierarchical document classification

Machine Translation (MT)

- Machine Translation is the task of translating a sentence X from source language to sentence Y in target language
- A long-history (since 1950)
 - Early systems were mostly rule-based
- Challenges:
 - Common sense
 - Idioms!
 - Typological differences between the source and target language
 - Alignment
 - Low-resource language pairs

Statistical Machine Translation (SMT)

- Statistical Machine Translation (1990-2010) learns a probabilistic model using large amount of parallel data
- The model aims to find the best target language sentence Y*, given the source language sentence X:

$$Y^* = \operatorname*{argmax}_{Y} P(Y|X)$$

 SMT uses Bayes Rule to split this probability into two components that can be learnt separately:

Learning Translation model

To learn the Translation model P(Y|X), we need to break X and Y down to aligned words and phrases:

 To this end, the alignment latent variable a is added to the formulation of Translation model:

P(X, a|Y)

- Alignment …
 - is a latent variable \rightarrow is not explicitly defined in the data!
 - defines the correspondence between particular words/phrases in the translation sentence pair

SMT – summary

- Defining alignment is complex!
 - The Translation model should jointly estimate distributions of both variables (*X* and *a*)
- SMT systems …
 - were extremely complex with lots of features engineering
 - required extra resources like dictionaries and mapping tables between phrases and words
 - required "special attention" for each language pair and lots of human efforts

MT – Evaluation

- BLEU (Bilingual Evaluation Understudy)
- BLEU computes a similarity score between the machine-written translation to one or several humanwritten translation(s), based on:
 - *n*-gram precision (usually for 1, 2, 3 and 4-grams)
 - plus a penalty for too-short machine translations
- BLEU is precision-based, while ROUGE is recall-based

Details of how to calculate BLEU: <u>https://www.coursera.org/lecture/nlp-sequence-models/bleu-score-optional-kC2HD</u>

- Attention Networks
- Introduction to Machine Translation
- Attention applications
 - Seq2seq with Attention
 - Hierarchical document classification

Neural Machine Translation (NMT)

 Given the source language sentence X and target language sentence Y, NMT uses seq2seq models to calculate the conditional language model:

P(Y|X)

- A language model of the target language
- Conditioned on the source language
- In contrast to SMT, no need for pre-defined alignments!
- We can simply use a seq2seq with two RNNs

Seq2seq with two RNNs (recap)

ENCODER

DECODER

 $\hat{z}^{(i)}$: predicted probability distribution of the next target word, given the source sequence and previous target words

Seq2seq with two RNNs – training (recap)

Encoder: read source

Look here for more: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Seq2seq – decoding / beam search (recap)

<bos>

Start with the begin of sentence token or with an empty sequence

Look here for more: <u>https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html</u>

Sentence-level semantic representations (recap)

• Two-dimensional projection of the last hidden states $h^{(L)}$ of RNN_e, obtained from different phrases

Bottleneck problem in seq2seq with two RNNs

ENCODER

DECODER

Seq2seq + Attention

- It can be useful, if we allow decoder the direct access to all elements of source sequence,
 - Decoder can decide on which element of source sequence, it wants to put attention
- Attention is a solution to the bottleneck problem
- Seq2seq with attention ...
 - adds an attention network to the architecture of basic seq2seq (two RNNs)
 - At each time step, decoder uses the attention network to attend to all contextualized vectors of the source sequence
 - Training and inference (decoding) processes are the same as basic seq2seq

Seq2seq with attention

Seq2seq with attention

Seq2seq with attention

- Two sets of vocabularies
 - \mathbb{V}_e is the set of vocabularies for source sequences
 - \mathbb{V}_d is the set of vocabularies for target sequences

Encoder

- From words to word embeddings:
 - Encoder embeddings of source words $(\mathbb{V}_e) \rightarrow E$
 - Embedding of the source word $x^{(l)}$ (at time step $l) \rightarrow e^{(l)}$
- Encoder RNN:

$$\boldsymbol{h}^{(l)} = \text{RNN}_{\boldsymbol{e}} \ (\boldsymbol{h}^{(l-1)}, \boldsymbol{e}^{(l)})$$

Parameters are shown in red

<u>Decoder</u>

- From words to word embeddings:
 - Decoder embeddings of target words (\mathbb{V}_d) at input $\rightarrow U$
 - Embedding of the target word $y^{(t)}$ at time step $t \rightarrow u^{(t)}$
- Decoder RNN: $s^{(t)} = \text{RNN}_d(s^{(t-1)}, u^{(t)})$
 - where the initial hidden state of the decoder RNN is set to the last hidden state of the encoder RNN: $s^{(0)} = h^{(L)}$

Decoder (cont.)

Attention context vector

$$\boldsymbol{h}^{*(t)} = \operatorname{ATT}(\boldsymbol{s}^{(t)}, [\boldsymbol{h}^{(1)}, \dots, \boldsymbol{h}^{(L)}])$$

For instance, if ATT is a "basic dot-product attention", this is done by:

- First calculating non-normalized attentions:

$$\tilde{\alpha}_l^{(t)} = {\boldsymbol{s}^{(t)}}^{\mathrm{T}} \boldsymbol{h}_l$$

- Then, normalizing the attentions:

$$\boldsymbol{\alpha}^{(t)} = \operatorname{softmax}(\widetilde{\boldsymbol{\alpha}}^{(t)})$$

- and finally calculating the weighted sum of encoder hidden states

$$\boldsymbol{h}^{*(t)} = \sum_{l=1}^{L} \alpha_l^{(t)} \boldsymbol{h}_l$$

Decoder (cont.)

- Decoder output prediction
 - Predicted probability distribution of words at the next time step:

$$\hat{\mathbf{z}}^{(t)} = \operatorname{softmax} \left(\mathbf{W}[\mathbf{s}^{(t)}; \mathbf{h}^{*(t)}] + \mathbf{b} \right) \in \mathbb{R}^{|\mathbb{V}_d|}$$

[;] denotes the concatenation of two vectors

- Probability of the next target word (at time step t + 1):

$$P(y^{(t+1)}|X, y^{(1)}, ..., y^{(t-1)}, y^{(t)}) = \hat{z}_{y^{(t+1)}}^{(t)}$$

Alignment in NMT (seq2seq with attention)

Attention automatically learns (nearly) alignment

Seq2seq with attention – summary

- Attention on source sequence facilitates the focus on relevant words and a better flow of information
- Adding the attention network also helps avoiding vanishing gradient problem by providing a shortcut to faraway states

Compositional embeddings with Attention networks

- Attention is used to create a compositional embedding of value vectors according to a query
 - as we already saw in <u>seq2seq</u> models ...
 - but it can also in tasks like sequence classification

Hierarchical document classification with attention

- Document classification with attention
 - An attention network is applied to <u>word embeddings as values</u> (inputs) to compose a document vector (output)
 - Document embedding is then used as features for classification
 - The **query** of the attention network is a randomly initialized parameter vector, whose weights are trained end-to-end with the model
- Hierarchical document classification
 - Split the document into sentences
 - Use a word-level attention to create a <u>sentence embedding</u> from the word embeddings of each sentence
 - Use a sentence-level attention to create the <u>document</u> <u>embedding</u> from the sentence embeddings

Examples

CT: 1 Pradiction: 1			Prediction: 0							
			terrible value .							
	pork belly = delicious .		ordered pasta entree							
	scallops ?		ordered pasta entree .							
	i do n't		•							
			\$ 16.95 good taste but size was an							
			appetizer size							
	like .									
	scallops , and these were a-m-a-z-i-n-g .		•							
	fun and tasty cocktails .		no salad, no bread no vegetable.							
	novt time i 'm in phoenix i will go		this was .							
	next time i in in phoenix , i win go		our and tasty cocktails .							
	back here .		our second visit							
	highly recommend .									
			1 will not go back .							

Figure 5: Documents from Yelp 2013. Label 4 means star 5, label 0 means star 1.

Example

GT: 1 Prediction: 1

why	does	zebra	as ha	ive	stri	pes	?		
what	is t	he pu	irpose	O	r tł	iose	sti	ripes	?
who	do	they	serve	tł	ne	zebra	as	in	the
wild	life	?							
this	prov	vides	can	nouf	lage	-		pred	ator
vision	n is	such	that	it	is 1	usual	ly	diffi	cult
for t	them	to se	e co	mpl	lex	patte	erns	5	

GT: 4 Prediction: 4

how	do	i	get	rid	of	a	11	th	e	old	W	veb
searches i have on my web browser ?												
i wa	ant	to	clea	n	up	m	ıy	w	eb	bro	W	ser
go t	o t	ools	>	op	tion	S .	•					
then click " delete history " and "												
clean up temporary internet files . "												

Figure 6: Documents from Yahoo Answers. Label 1 denotes Science and Mathematics and label 4 denotes Computers and Internet.

Sequence classification with attention – summary

- Attention can be used to compose a sequence vector from its token vectors
 - In this case, the query vector is a set of parameters that will be trained with other model parameters
 - The composed vector is in fact the weighted average of the token vectors based on attention weights
- Attention provides some interpretability
 - Looking at attention distributions, one may assume what the model is focusing on
 - We should however be careful about directly taking attention distributions as model explanations (particularly in Transformers)!
 - Jain, Sarthak, and Byron C. Wallace. "Attention is not Explanation." *In proc. of NAACL-HTL* 2019. <u>https://www.aclweb.org/anthology/N19-1357.pdf</u>
 - Wiegreffe, Sarah, and Yuval Pinter. "Attention is not not Explanation." *In proc. of EMNLP-IJCNLP*. 2019. <u>https://www.aclweb.org/anthology/D19-1002/</u>