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Information Retrieval everywhere!
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Information Retrieval everywhere!

IBM Watson and Jeopardy
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Information Retrieval

§ Information Retrieval (IR) is finding material (usually in the form of 
documents) of an unstructured nature that satisfies an information 
need from within large collections

§ When talking about IR, we often only think of web search

§ The goal of IR is however to retrieve relevant contents to the user’s 
information need

§ IR covers a wide set of tasks such as …
- Ranking, question/answering, information summarization
- But also … user behavior/experience study, personalization, etc.
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Terminology

§ Information need
- E.g. My swimming pool bottom is becoming black and needs to be 

cleaned
§ Query

- A designed representation of users’ information need
- E.g. pool cleaner 

§ Document
- A unit of data in text, image, video, audio, etc.

§ Relevance
- Whether a document satisfies user’s information need
- Relevance has multiple aspects: topical, semantic, temporal, spatial, 

etc.
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Ad-hoc IR (all we discuss in this lecture)

§ Studying the methods to estimate relevance, solely based on the 
contents (texts) of queries and documents
- In ad-hoc IR, meta-knowledge such as temporal, spatial, user-related 

information are normally taken out
- The focus of ad-hoc IR is on methods to exploit contents

§ Ad-hoc IR is a part of the ranking mechanism of search engines, 
but there are several other aspects…
- Diversity of information
- Personalization
- Information need understanding
- Search engine log files analysis
- …
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Relevance scoring & IR models

wisdom of mountainsquery:
(𝑞)

• Collection contains 𝑀 documents. Each document 
𝑑 and each query 𝑞 consists of a set of terms

• An IR model calculates/predicts a relevance score 
between the query and document:

𝑠 𝑞, 𝑑
• Documents are ranked according to their predicted 

relevance scores to the query, from highest to 
lowest

𝑑20

𝑑1402

𝑑5

𝑑100
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Exact-matching IR models

§ Exact-matching IR models – in their basic forms – assign 
importance weights to each query term that appears in a document

𝑠 𝑞, 𝑑 = '
!!∈!

term_weighting!!,$

§ Possible exact-matching term weighting models:
- tc
- tf-idf
- PL	
- BM25

§ Neural IR models (next topic in the lecture)
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Ranking results as we know!
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Sample ranking results – format in research!

§ TREC run file: standard format to report the ranking results of top-1000 
documents for some queries, retrieved by a model

qry_id (iter)   doc_id rank score run_id

2 Q0 1782337 1 21.656799 cool_model
2 Q0 1001873 2 21.086500 cool_model

…
2 Q0 6285819 999 3.43252 cool_model
2 Q0 6285819 1000 1.6435 cool_model
8 Q0 2022782 1 33.352300 cool_model
8 Q0 7496506 2 32.223400 cool_model
8 Q0 2022782 3 30.234030 cool_model

…
312 Q0 2022782 1 14.62234 cool_model
312 Q0 7496506 2 14.52234 cool_model

…
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Efficient retrieval with pre-computed Collection Index

wisdom of mountainsquery:
(𝑞)

𝑑20

𝑑1402

𝑑5

𝑑100

How can we efficiently calculate relevance scores 
for documents? → Collection Index

☞ Since the IR models so far are based on exact 
matching, an we can focus on calculating 
relevance scores only for the documents that 
contain query terms → done by Inverted Index
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Inverted index

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

Antony 3 4 8 16 32 64128

32

§ Inverted index is a data structure for efficient retrieval
- Inverted index is created once at index time for all documents in the 

collection, and used for each query during query time

§ Inverted index creates a posting list for each unique term in 
collection
- A posting list of a term contains the list of the IDs of the documents, in 

which the term appears

Image source: https://web.stanford.edu/class/cs276/19handouts/lecture2-intro-boolean-1per.pdf

https://web.stanford.edu/class/cs276/19handouts/lecture2-intro-boolean-1per.pdf
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Retrieval process using inverted index

1. Fetch the posting lists of query terms
2. Traverse through posting lists, and calculate the relevance score 

for each document in the posting lists
3. Retrieve top n documents with the highest relevance scores

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

Antony 3 4 8 16 32 64128

32



Search with concurrent traversal

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

3 4 8 16 32 64128

32

Sec. 7.1.2

Brutus

Caesar

Calpurnia

Antony
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IR evaluation

§ Evaluation of an IR system requires three elements:
- A benchmark document collection 
- A benchmark suite of queries
- Relevance judgements for pairs of query–document 

• Judgements specifies whether the document addresses the 
underlying information need of the query

• Ideally done by human, but also through user interactions
• Relevance judgements appear in forms of …

– Binary: 0 (non-relevant) vs. 1 (relevant), or …
– Multi-grade: more nuanced relevance levels, e.g. 0 (non-

relevant), 1 (fairly relevant), 2 (relevant), 3 (highly relevant)



Evaluation Campaigns

§ Text REtrieval Conference (TREC)

§ Conference and Labs of the Evaluation Forum (CLEF)

§ MediaEval Benchmarking Initiative for Multimedia Evaluation

https://trec.nist.gov

http://www.clef-initiative.eu

http://www.multimediaeval.org

https://trec.nist.gov/
http://www.clef-initiative.eu/
http://www.multimediaeval.org/
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Sample relevance judgement – format in research!

§ TREC QRel (QueryRelevance) file: standard format to provide relevance 
judgements of some queries regarding to some documents

qry_id (iter) doc_id relevance_grade

101 0 183294 0
101 0 123522 2
101 0 421322 1
101 0 12312 0

…
102 0 375678 2
102 0 123121 0

…
135 0 124235 0
135 0 425591 1

… 
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Common IR Evaluation Metrics

§ Binary relevance
- Precision@n (P@n)
- Recall@n (P@n)
- Mean Reciprocal Rank (MRR)
- Mean Average Precision (MAP)

§ Multi-grade relevance
- Normalized Discounted Cumulative Gain (nDCG)
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Precision@n

§ Precision@n: fraction of retrieved docs at top-n results that 
are relevant

§ Example:
- P@3 = 2/3 
- P@4 = 2/4
- P@5 = 3/5

§ Final evaluation result is the mean of P@n across all queries 
in test set



P@6 remains the 
same if we swap the 

first and the last 
result!

Fair

Bad

Good

Fair

Bad

Excellent

Rank positions matter!



Discounted Cumulative Gain (DCG)

§ A popular measure for evaluating web search and other 
related tasks

§ Assumptions:
- Highly relevant documents are more useful than 

marginally relevant documents (multi-grade relevance)
- The lower the ranked position of a relevant document, the 

less useful it is for the user, since it is less likely to be 
examined 

• This common behavior of users when interacting with 
ranked lists is known as position bias



Discounted Cumulative Gain (DCG)

§ Gain: define gain as graded relevance, provided by 
relevance judgements

§ Discounted Gain: gain is reduced as going down the ranking 
list. A common discount function: !. /01!(3456 7089:905)

- With base 2, the discount at rank 4 is 1/2, and at rank 8 it is 1/3

§ Discounted Cumulative Gain: the discounted gains are 
accumulated starting at the top of the ranking to the lower 
ranks till rank 𝑛



Discounted Cumulative Gain (DCG)

§ Given the ranking results of a query, DCG at the position 𝑛 of 
the ranking list is:

DCG@𝑛 = 𝑟𝑒𝑙' +/
()*

+
𝑟𝑒𝑙(
log* 𝑖

where 𝑟𝑒𝑙% is the graded relevance (in relevance judgements) of the 
document at position 𝑖 of the ranking results

§ Alternative formulation (commonly used):

DCG@𝑛 =/
()'

+
2,-.! − 1
log*(𝑖 + 1)



DCG Example

Rank Retrieved 
document ID

Gain
(relevance)

Discounted 
gain

DCG

1 𝑑20 3 3 3
2 𝑑243 2 2/1=2 5
3 𝑑5 3 3/1.59=1.89 6.89
4 𝑑310 0 0 6.89
5 𝑑120 0 0 6.89
6 𝑑960 1 1/2.59=0.39 7.28
7 𝑑234 2 2/2.81=0.71 7.99
8 𝑑9 2 2/3=0.67 8.66
9 𝑑35 3 3/3.17=0.95 9.61
10 𝑑1235 0 0 9.61

DCG@10 = 9.61



Normalized DCG (nDCG)

§ Depending on the relevance judgements, the range of good/bad 
DCG results might be different across queries, and hence DCG 
results of different queries would not be comparable

- Calculate the mean of DCG values across all test queries is therefore not 
reasonable

§ To normalize DCG at ranking position 𝑛:
- For each query, estimate Ideal DCG (IDCG) which is the DCG 

for the ranking list sorted by relevance judgements (best 
possible ranking)

- Calculate nDCG by dividing DCG by IDCG

§ Final nDCG@𝑛 is the mean across all test queries
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Learning to predict relevance scores

• Instead of defining a formula as in classical IR models, we can 
learn to predict relevance scores 𝑠 𝑞, 𝑑 by training a neural 
network model

• Such neural/deep IR models can benefit from semantic relations in 
the embedding space, …
• Hence do soft-matching between terms, in contrast to exact-

matching in classical IR models

𝑠 𝑞, 𝑑
𝑞

𝑑
an arbitrary deep IR model
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Neural IR – task formulation

Training time
§ The model receives a given query 𝑞 to a document 𝑑, and learns 

to calculate the relevance score between them:

𝑠 𝑞, 𝑑
- Training is done using LTR (next topic of the lecture)

Inference/Retrieval time
§ For a given query 𝑞 and the set of (candidate) documents 

𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑀 , the model calculates the relevance scores: 

[𝑠 𝑞, 𝑑1 , 𝑠 𝑞, 𝑑2 , 𝑠 𝑞, 𝑑3 , … , 𝑠 𝑞, 𝑑𝑀 ].

§ This list is sorted from the highest predicted relevance score to the 
lowest, and the corresponding top documents are retrieved
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Neural IR paradigms

D Q

f(Q,D)

Interaction

Encoder Encoder

Interaction-based Retrieval models
• calculate the interactions between 

the input embeddings of the 
document and query

• output a feature vector, representing 
the relation between query and 
document

• 𝑠 𝑞, 𝑑 is calculated from the feature 
vector

𝑠 𝑞, 𝑑

𝑞 𝑑
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Interaction-based Retrieval models
using an encoder LM like BERT

[CLS] a1 a2 … a|q| [SEP]b1 b2 … b|d| [SEP]

𝒘

𝑠 𝑞, 𝑑 = 𝒛𝒘

𝒛

Output of the [CLS] 
embedding encodes the 

relation between query and 
document

tokens of query 𝑞
tokens of the document 𝑑
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Interaction-based Retrieval – inference/retrieval time

§ Neural/deep IR models can’t readily use an inverted index for retrieval
Two (non-optimal) approaches:
§ Full-ranking: given a query, calculate relevance scores for all documents, sort 

the results, and retrieve the documents with highest relevance scores
- Pros: including all documents, cons: very very expensive!

§ Re-ranking: re-rank top-𝑡 results of another IR model called first ranker
- Pass the query to the first ranker and retrieve its top-𝑡 documents, called 

candidate documents
• First ranker is usually an efficient but weaker IR model like BM25
• 𝑡 is usually a number between 100 to 1000

- Calculate relevance scores for the candidate documents using the 
(stronger) neural IR model

- Update the original ranking results by re-ordering (re-ranking) the 
candidate documents using the new relevance scores

- Pros: efficiency, cons: there might be relevant documents that do not 
appear in the candidate set
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Neural IR paradigms

D Q

f(Q,D)

Interaction

Encoder Encoder

Dense Retrieval models
• first encode the document and the query 

in two separate vectors
• 𝑠 𝑞, 𝑑 is then calculated as the similarity

of the two vectors
• This method enables direct retrieval of 

documents, achieved by finding the 
document embeddings which appear at 
the nearest proximity of the embedding 
of a query

Interaction-based Retrieval models
• calculate the interactions between 

the input embeddings of the 
document and query

• output a feature vector, representing 
the relation between query and 
document

• 𝑠 𝑞, 𝑑 is calculated from the feature 
vector

𝑠 𝑞, 𝑑

D Q

f(Q,D)

Encoder Encoder

𝑠 𝑞, 𝑑

𝑞 𝑑𝑞 𝑑
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Dense Retrieval models
using an encoder LM like BERT

𝑠 𝑞, 𝑑 = 𝒛6𝒛𝒅

[CLS] b1 b2 … b|d| [SEP]

Subwords of the document 𝑑Subwords of query 𝑞

[CLS] a1 a2 … a|q| [SEP]

𝒛! Output of the [CLS] embedding 
encodes query 𝒛$ Output of the [CLS] embedding 

encodes document
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Dense Retrieval – inference/retrieval time

§ The architecture of Dense Retrieval models enables direct retrieval instead 
of full-ranking or re-ranking

To retrieve the set of relevant documents …
§ After training, the embeddings of all documents (𝒛") are calculated

- E.g., the embeddings are often stored/indexed in the data structure of an 
Approximate Nearest Neighbor (ANN) algorithm for more efficient retrieval

§ At inference time, given the query 𝑞, …
- the embedding of the query (𝒛#) is calculated
- the most similar document embeddings to 𝒛# are retrieved

• E.g., by calculating the dot product of 𝒛" to all document embeddings, or 
instead using a highly efficient ANN data structures

§ Dense Retrieval models enable highly efficient retrieval (even comparable 
with classical IR models), but might show a weaker performance in 
comparison with interaction-based models
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Learning to Rank (LTR)

§ It is insufficient to approach the learning of the models with ranking 
objectives, in the same way as the regression/classification models

§ Consider the list of predicted scores by a model:

[𝑠 𝑞, 𝑑1 , 𝑠 𝑞, 𝑑2 , 𝑠 𝑞, 𝑑3 , … , 𝑠 𝑞, 𝑑𝑀 ]

§ The final position of a document can only be known by comparing 
its predicted score with the ones of other documents

- For example, only by looking at 𝑠 𝑞, 𝑑3 = 1.423 we can not know in which 
position document 𝑑3 will end up

How should a model learn to predict scores according to a rank?!
§ Learning to rank approaches:

- Pointwise
- Pairwise
- Listwise (out of the scope of this lecture)
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LTR Pointwise/Pairwise – training data

§ For a given query 𝑞, training data consists of … 
§ a (small) set of relevant or positive documents:

𝐷9
6 = [𝑑9

('), 𝑑9
(*), … ]

- Each 𝑑# is a document judged as relevant to 𝑞
- Usually only a few positive documents per each query are available

§ as well as a set of non-relevant or negative documents:

𝐷<6 = [𝑑<('), 𝑑<(*), … ]
- Each 𝑑$ can be …

• a document judged as non-relevant to 𝑞 (usually only a few are available)
• a randomly sampled document from the collection – random negatives
• a document sampled from a list of candidate documents, like from the top 

1000 retrieved documents for 𝑞 using a first ranker– hard negatives
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Available collections with large training data

§ MS MARCO (Microsoft MAchine Reading Comprehension)
- Queries and retrieved passages of BING, annotated by human

§ TripClick (Collection & Log Files of a Health Web Search Engine)
- Queries and clicked documents of TripDatabase search engine

https://microsoft.github.io/msmarco/
https://tripdatabase.github.io/tripclick/

https://www.tripdatabase.com/
https://microsoft.github.io/msmarco/
https://tripdatabase.github.io/tripclick/
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Pointwise LTR

§ Pointwise LTR models learn the relevance prediction of every 
positive/negative document independently of the other documents
- Pointwise models are in fact classification/regression models

§ Training data is therefore prepared in the form of:
[input=(query, document), label(𝑦)=relevance score]

Example: For the query 𝑞

input = 𝑞, 𝑑#
% , 𝑦 = 1

input = 𝑞, 𝑑#
& , 𝑦 = 1

input = 𝑞, 𝑑#
' , 𝑦 = 1

…
input = 𝑞, 𝑑$% , 𝑦 = 0
input = 𝑞, 𝑑$& , 𝑦 = 0
input = 𝑞, 𝑑$' , 𝑦 = 0

…
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Pointwise LTR – loss 

§ Similar to classification tasks, Cross Entropy is a commonly used 
as the loss of pointwise LTR:

ℒ = −𝔼 6,= ,> ~𝒯 𝑦 log 𝜎 𝑠(𝑞, 𝑑)

- 𝒯 → the set of all training data

- 𝜎 𝑠(𝑞, 𝑑) → sigmoid applied to the predicted score to turn the 
score into a probability 
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Pairwise LTR

§ Pair-wise LTR is applied to pairs of positive-negative documents
§ Pair-wise optimization aims to make the predicted score of a query 

to a relevant document higher than the one to a non-relevant 
document: 𝑠 𝑞, 𝑑& > 𝑠(𝑞, 𝑑')

- This means that the IR model learns to give a higher relevance score to 𝑑! and 
therefore rank 𝑑! in a higher position than 𝑑". This (hopefully) leads to a better 
overall ranking results for the given query.

§ The training data is therefore provided in the form of triplets:
[query, positive-document, negative-document]

Example: For the query 𝑞

𝑞, 𝑑#
% , 𝑑$% 𝑞, 𝑑#

& , 𝑑$% …

𝑞, 𝑑#
% , 𝑑$& 𝑞, 𝑑#

& , 𝑑$& …

𝑞, 𝑑#
% , 𝑑$' 𝑞, 𝑑#

& , 𝑑$' …

… … …
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Pairwise LTR – Max Margin loss

§ Max-Margin is a widely used loss function for pair-wise training
- Also called Hinge loss, contrastive loss, or margin objective

§ Max-Margin ranking loss “punishes” the network until a given 
margin hyperparameter 𝐶 is held between the predicted scores of 
the relevant and non-relevant documents:

ℒ = 𝔼 6,=$,=% ~𝒯 max(0, 𝐶 − (𝑠 𝑞, 𝑑9 − 𝑠(𝑞, 𝑑<)))

Examples when 𝐶 = 1: 
If 𝑠 𝑞, 𝑑$ = 2 and 𝑠 𝑞, 𝑑% = 1.8 → ℒ = 0.8
If 𝑠 𝑞, 𝑑$ = 2 and 𝑠 𝑞, 𝑑% = 3.8 → ℒ = 2.8
If 𝑠 𝑞, 𝑑$ = 2 and 𝑠 𝑞, 𝑑% = 0.8 → ℒ = 0.0


