Winter semester 2022/23

344.175 VL: Natural Language Processing
Introduction to Large Language Models

Navid Rekab-saz

Email: navid.rekabsaz@jku.at
Office hours: https://navid-officehours.youcanbook.me

J ¥ U Institute of
® Computational
UNIVERSITY LINZ | ® Perception

mailto:navid.rekabsaz@jku.at
https://navid-officehours.youcanbook.me/

Agenda

» Background

« Contextualized embeddings
« Transformers — a shallow introduction
« Subword tokenization — recap

» Large Encoder LMs with Transformers

Agenda

- Background

« Contextualized embeddings
« Transformers — a shallow introduction
« Subword tokenization — recap

» Large Encoder LMs with Transformers

(Static

Words

) Word Embeddings

ne

A
QU

ot e

.

g, e

. g oo e
e

.,

vl SR
v2 I
vN |

S
-
w
v v
05k + hoiress 4
04 4
oo * countess.
03~ < aunt » duchess
1 Sister

02r s empeess

0.1k ' »madam

ol in {helir

; ‘woman
«0.15 Lundle

“ beother

05} {man

05 -04 -03 -02 -04 0 01 02

‘king

03

04

05

Context matters!

= Static word embeddings ...
- assign a fixed vector to each word, which in principle ...
- encodes all various meanings/relations of the word

= However, the right meaning of a word though strongly depends
on the contexts in which the word appears

- E.g. apple as a word with multiple meaning can be disambiguated
when considering its context:

« “eating an apple” vs. “share of the apple company”

Contextualized Word/Token Embedding Models

= Contextualized word embeddings define ° o 5 5
the representation of a word according to 61 ez 63 €y
the context in which the word appears ° © © ©

The contextualized embedding of a word/token T 1
can be different in different given /
sequences/contexts

a neural network model

= |nputis a sequence of words/tokens, and with some parameters!

their corresponding static word/token

embeddings taken from matrix E \
= For each input word/token, the model
“looks” at the embeddings of other o o o o
words/tokens in the sequence e1 €2 €3 84
. o @) @) @)
The model outputs contextualized word E% E E E

embeddings, each corresponding to an
input word/token X1 X2 X3 Xy

Agenda

- Background

« Contextualized embeddings
* Transformers — a shallow introduction
« Subword tokenization — recap

» Large Encoder LMs with Transformers

Transformers

= Originally introduced in neural machine translation and now widely used for
sequence encoding and decoding in various tasks

Transformer encoder Transformer decoder

t t t 1 t t t 1
N

Feed Forward Neural Network Feed Forward Neural Network
_ J _ J
s N s N

. . Multi-head Encoder-Decoder

Multi-head Self-Attention Attention
_ J _ J
K / e N
1 1 T 1 Masked Multi-head Self-Attention

_ J

t 1t 1t 1

Attention is all you need. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Polosukhin, I. (2017). In NeurlPS.
Learn more: http://jalammar.github.io/illustrated-transformer/ https://jalammar.github.io/illustrated-gpt2/

http://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-gpt2/

Contextualized word/token embeddings with
Transformer Encoder

= Each encoded vector is the contextual embedding of the
corresponding input vector

- (@] - 8 - @) - |©
€1|9| €210 €33 €43
(@) o O (@)

Self-Attention

1

Transformer Encoder

/

Q0 QO [==p

(@) (@) (@)
Et Et Et Et
X1 X9 X3 X4

Position embeddings

= Transformers are agnostic to the position of input tokens

- For a given token, a context token in long-distance has the same effect
as one in short-distance (no locality bias)

- The positions of tokens in a sequence can be highly important in some
tasks

Position embeddings —a common approach in Transformers:

= Create embeddings representing positions in a sequence, and add
the values of the position embeddings to the token embeddings at
corresponding positions
- Position embedding is usually created using a sine/cosine function
It can also be learned end-to-end with the model parameters

- Using position embeddings, the same token at different positions of a
sequence will have different final representations

10

Position embeddings — examples

An example of POSITIONAL .- B » . 1 » |
embeddings with ENCODING

four dimensions: + + +

EMBEDDINGS x: [] 1] x2 [xs IR

Position embedding
for location O

N Values from -1
Position (dark) to +1 (light)

embeddings

-08

Position embedding |

for location 20 °veeRNAnee BB RRBESS g e LR N AT Y BY S8R B8 8RAS HRNA AR AR ARARERARABA 50538 BERREEAARAI02555559989895083

420
P
4a
4
445
450
45¢
460
465
48
48
490
495
500
501
510

Dimensions (512)

Source: http://jalammar.qgithub.io/illustrated-transformer/ 11

http://jalammar.github.io/illustrated-transformer/

Agenda

- Background

 Transformers
 Transformers — a shallow introduction
« Subword tokenization — recap

» Large Encoder LMs with Transformers

Subwords — recap

Words with low frequencies naturally observe a small number of contexts, and
most probably end up with worse representations

- E.q., “structurally’ appears rarely, however, its meaning can be inferred
from “structure” which may appear much more often in a corpus

* Lemmatizers and stemmers turn “structurally’ and “structure” to the same stem (like
“structur’) but they the differences between these two

Ways to define subwords
- Fixed-length like character tri-grams in fastText
- Variable-length like Byte Pair Encoding, WordPiece, and SentencePiece

Subword tokenizer
- Training time: creates a vocabulary list of subwords using corpus statistics,

- Tokenization/Decoding time: uses this vocabulary list to decompose a
given word (or a given sequence) to subwords

13

Subword tokenization

Byte Pair Encoding (BPE)

= The core idea of BPE comes from information theory and
compression

= BPE (or in general subword tokenizers) consist of two steps:

1. Training: Learning a vocabulary list of subwords from a given
corpus

2. Tokenization (decoding): tokenize a given text using the
stored subwords vocabulary list

Reference: Sennrich, R., Haddow, B., & Birch, A.. Neural Machine Translation of Rare Words with Subword Units.
In proceedings of ACL (2016)

14

Byte Pair Encoding (BPE)

Sketch of training:

1.

Pre-tokenize the training corpus, for instance simply by splitting on
white spaces

Start from a vocabulary list with all single characters

Create a dictionary of words and counts from the pre-tokenized
training corpus

Add special character “ " to the end of each word in the dictionary
Expand the vocabulary list:

- Find the most frequent pair of characters in the dictionary of
words

- Merge the characters, and add them to the vocabulary list
- Repeat step 5 till some limits on vocabulary size are reached

(13)

Learn more at “Speech and Language Processing (3rd ed.) D. Jurafsky and J. H. Martin”, section 2.4.3.
https://web.stanford.edu/~jurafsky/slp3/2.pdf (the resource of the example)

15

https://web.stanford.edu/~jurafsky/slp3/2.pdf

Byte Pair Encoding — example

DD W AN DN

Consider a tiny training corpus that leads to the following dictionary

and vocabulary list

dictionary

) = 85 H
m - ® O O

W

W
W
d
W

e st _
er _
er __

vocabulary
., d, e, 1, 1, n, o, r, s, t, w

16

dictionary
oOw _
owest_
ewer _
ider _
e W _

N W AN W
B =35 =+

First merge

DD WA DN W

N W AN W

dictionary
low _

l owest _
newer_
wider_
new_

Next merge
dictionary

oW _

west_

W er_

d er_

W

S, =2 85 =
m H M O

vocabulary
., d, e, 1, 1, n, o, r, s, t, w

vocabulary
., d, e, 1, 1, n, o, r, s, t, w, r_

vocabulary
,d,e,1,1,n,0,r,s, t,w,r, er_

17

dictionary vocabulary

5 low _ _,d,e,i,1,n,0,r,s, t,w,r_, er_
2 lowest _
6 newer_
3 wider_
2 new_
Next merge
dictionary vocabulary
5 l ow _ _,d,e,i,1,n0o,r,s,t,w,r_, er_, ew
2 lowest _
6 n ew er_
3 wider_
2 n ew _
If we continue
Merge Current Vocabulary
(n, ew) _,d,e,i,1,n,0,r, s, t,w, r_, er__, ew, new
(1, o’ _,d,e,i,1,n,0,r,s, t,w, r_, er_, ew, new, lo
(lo, w) —,d,e,i,1,n,0,r,s, t,w, r_, er__, ew, new, lo, low

(new, er_)

(low,)

,d,e,i,1,n,0, 1,5, t,w, r, er__, ew, new, 1o, low, newer__
,d,e,i,1,n,0,r,s, t,w, r, er__, ew, new, lo, low, newer__, low_

18

WordPiece tokenization

= WordPiece is a descendent of BPE and has the following
differences:

= Selecting character pairs for merging in WordPiece is based on
“minimizing the language model likelihood of the training data”™

= WordPiece indicates internal subwords with “##” special symbol
- E.g. “unavoidable” — [“‘un’, “##avoid”, “##able’]

* For more details look into the original paper:
Schuster, M., & Nakajima, K. (2012). Japanese and Korean voice search.

In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 19

WordPiece tokenization

Tokenization (decoding) is done using MaxMatch algorithm

A greedy longest-match-first algorithm

MaxMatch choses the longest token in the vocabulary that matches the
given word

After a match, it repeats the previous step with the remainder of the word

function MAXMATCH(string, dictionary) returns list of tokens T

if string is empty
return empty list
for i < length(sentence) downto 1
firstword = first i chars of sentence
remainder = rest of sentence
if InDictionary(firstword, dictionary)
return list(firstword, MaxMatch(remainder,dictionary))

20

WordPiece tokenization

= WordPiece with MaxMatch decoding is used in some models such as BERT

Example
Original sequence:

“natural language processing”
pre-tokenization:

1%

[“natural’”, “language”, “processing’]
subword tokenization:

[“natural’, “lang”, “#H#uage”, ‘process”, “##ing’]

function MAXMATCH(string, dictionary) returns list of tokens T

if string is empty
return empty list
for i < length(sentence) downto 1
firstword = first i chars of sentence
remainder = rest of sentence
if InDictionary(firstword, dictionary)
return list(firstword, MaxMatch(remainder,dictionary))

21

Agenda

» Background

« Contextualized embeddings
« Transformers — a shallow introduction
« Subword tokenization — recap

- Large Encoder LMs with Transformers

Large Language Models (LLMs)

= Encoder LLMs

Model sees whole the sequence (past and future)
Input sequence is encoded into contextualized embeddings

Additionally, some models provide a sequence embedding
or a pair-sequence embedding

Representative models: BERT, RoBERTa, XLM-*, ELMo

23

BERT

Bidirectional Encoder Representation from Transformers

= BERT is a pre-trained Encoder LLM which ...
- is composed of multi-layers of Transformer Encoder,

- uses WordPiece for tokenization,
- trained with a Masked Language Model objective,
- provides contextualized word embeddings ...

- as well as a sequence or pair-sequence embedding for one/multiple
sequence(s) using sentence pair encoding

12 [ENCODER % l
@
o 00 | ’

M

—h

2 (ENCODER J
1 (ENCODER J

1 2 3 4 see 512

Devlin, J., Chang, M. W, Lee, K., & Toutanova, K. (2019, June). BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. In Proc. of NAACL-HLT (2019) 24

Input embeddings (for one sequence)

« The input to Encoder Transformers is in fact the element-wise sum
of three types of embeddings
« Token embeddings, taken from a static subword embedding matrix (learnable)
« Sentence embeddings (fixed)
« Transformer position embeddings (fixed)

Token
An embedding which | Embeddings Brows || Emy || Faog Eis || Ecute || Erser
specifies that all -+ -+ -+ -+ -+ +
words comes from [sentence
sequence A Embedding EA EA EA EA EA EA
+ + + + + +
Transformer
4 Positional
Fixed pre-defined / Embedding E0 E1 E2 E3 E4 ES
vectors which indicate |
the position of each . \ \ . N . N
word in the sequence Input [CLS) my dog is (cute 1 [SEP]
————— v /,
Special token [CLS] specifies Special token [SEP]

the embedding for encoding

whole the sequence specifies the end of the

sequence

Masked Language Model (MLM)

= “Normal” language modeling objective: move from left to right (or right
to left) and in each step predict the next token

- The LM can see the full context on processing the last token
- Good fit for language generation but suboptimal for sequence encoding

= Masked Language Model objective masks out k% of the tokens of
iInput sequence, passes the masked sequence to the model, and
predicts the masked words in output

Example
sequence: Jim made spaghetti for his girlfriend and he was very proud!

Input: Jim made [MASK] for his girlfriend and [MASK] was very proud!

l l

predict: spaghetti he

26

MLM training A X
L= —logyx, = —log¥cat

P(x3|masked sequence) = J,, :

4 n
| | |
/ [Transformer Encoder

[Transformer Encoder

|_
Y [Transformer Encoder
LLI
a8

Corpus:

a fluffy cat sunbathes
A training datapoint: k ? ? ?
a fluffy [MASK] sunbathes EI EI EI

BERT Training setting

Trained using MLM on Wikipedia + BookCorpus

= Dictionary size is ~30K tokens (due to WordPiece subword
tokenization)
= Specs of some provided pre-trained models:
- BERT-Tiny: 2-layer, 128-hidden, 2-head, ~4M parameters™
- BERT-Mini: 4-layer, 256-hidden, 4-head, ~11M parameters*
- BERT-Base: 12-layer, 768-hidden, 12-head, ~110M parameters*
- BERT-Large: 24-layer, 1024-hidden, 16-head, ~340M parameters*

= Some resources:
- https://qgithub.com/gooqgle-research/bert

- Library to have BERT models in PyTorch: https://huggingface.co/transformers/

* For comparison, a (static) word embedding like word2vec with vocabulary size 200K and vector size 768 has 153M parameters

28

https://github.com/google-research/bert
https://huggingface.co/transformers/

BERT fine-tuning for one sequence

y = P(Y|X) = softmax(oW + b)

Output embedding of [CLS]

8 ,,,,,, provides a compositional
0 o embedding of the sequence
o)

12 (ENCODER

1 (ENCODER

1 2 3 4 oo o

[CLS] X; X5 X3 w X, [SEPI]

512

29

Sentence (Sequence) pair encoding

Many NLP tasks need to calculate the relation between two
sequences

- E.g., question answering, information retrieval, natural language
inference, paraphrasing, etc.

During training, BERT also learns the relationships between two
sequences using an additional binary classifier objective

- The binary classifier take the output embedding of [CLS]

- It predicts whether Sequence B is the actual sequence that proceeds
Sequence A or a random sentence

- This classifier is jointly optimized with the MLM objective

If one sequence is given, the output of [CLS] is sequence embedding

If two sequences are given, the output of [CLS] is the feature vector
of the relation between the sequences

30

Input to BERT - two sequences

Sentence embeddings make a
distinction between the embeddings
of Sentence A and Sentence B

Token
Embeddings

Sentence *

Embedding

Transformer
Positional
Embedding

Input

S /E[CLS] Emv E\dog Eis Ecute E[SEP] Ehe EMS"I Eplav E”ing E[SEP]
+ + + + + + + + + + +
EN (RETS| (RETS WESS| (NES| (NESN (RESN (NESS(([RES [INEN NES
+ + + + + + + + + + +
E0 El EZ E3 E4 ES E6 E7 E8 E9 EIO
’ \ ™
[CLS) my dog is (cute] [SEP] he (likes 1[play] ##ing] [SEP]

31

BERT Fine-tuning for Text Matching/Similarity tasks

9 = similarity(X™®,X®) = g(ow)

Output embedding of the

[CLS] token encodes the

relation between the input
sequences

ENCODER

ENCODER

[CLS] x,(V) ..

Subwords of sequence X

Xn(l) [SEP] X1(2) . Xm(Z)

AS

512

[SEP]

™ Subwords of the sequence X®

32

Class
Label

&
[T][A B35S E A

BERT

[eafle] (&][Emn]l e |- (&)

AR EE- E
= il

Sentence 1 Sentence 2

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

Start/End Span

BERT

[eafle |- [l Em]ler |- [&]

[ma](2]

£f

() =) (= -
L'_I

Question Paragraph

(c) Question Answering Tasks:
SQuAD v1.1

. L man mam g .

Fine tuning — inputs in different scenarios

Class
Label

BERT
Elcul E, = Ey

. 0
[cLs] || Tok1 | Tokzl Tok N

|
|
Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, ColA

200
5 Ga=)-)

. L man aa g -

O BPER - 0

< -

BERT
s 5 | = &
P g P 2
| [cLs) | Tok 1 Tok 2 Tok N
|
|
Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER 33

Some evaluation results

= A generic, deep, pre-trained model that can simply be
plugged in (almost) any NLP task!

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 35k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.9 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 88.1 91.3 45.4 80.0 82.3 56.0 5.2
BERTgAsE 84.6/83.4 1.2 90.1 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 91.1 94.9 60.5 86.5 89.3 70.1 81.9

34

