
Institute of
Computational
Perception

344.175 VL: Natural Language Processing
Introduction to Large Language Models

Navid Rekab-saz

Email: navid.rekabsaz@jku.at
Office hours: https://navid-officehours.youcanbook.me

Winter semester 2022/23

mailto:navid.rekabsaz@jku.at
https://navid-officehours.youcanbook.me/

Agenda

• Background
• Contextualized embeddings
• Transformers – a shallow introduction
• Subword tokenization – recap

• Large Encoder LMs with Transformers

Agenda

• Background
• Contextualized embeddings
• Transformers – a shallow introduction
• Subword tokenization – recap

• Large Encoder LMs with Transformers

4

𝑣1

𝑣2

𝑣𝑁

𝑑

(Static) Word Embeddings

𝑬 → 𝑁×𝑑

5

Context matters!

§ Static word embeddings …
- assign a fixed vector to each word, which in principle …
- encodes all various meanings/relations of the word

§ However, the right meaning of a word though strongly depends
on the contexts in which the word appears
- E.g. apple as a word with multiple meaning can be disambiguated

when considering its context:
• “eating an apple” vs. “share of the apple company”

6

Contextualized Word/Token Embedding Models

§ Contextualized word embeddings define
the representation of a word according to
the context in which the word appears

- The contextualized embedding of a word/token
can be different in different given
sequences/contexts

§ Input is a sequence of words/tokens, and
their corresponding static word/token
embeddings taken from matrix 𝑬

§ For each input word/token, the model
“looks” at the embeddings of other
words/tokens in the sequence

§ The model outputs contextualized word
embeddings, each corresponding to an
input word/token

a neural network model
with some parameters!

𝒆! 𝒆" 𝒆#

%𝒆! %𝒆" %𝒆#

𝒆$

%𝒆$

𝑥!
𝑬

𝑥"
𝑬

𝑥#
𝑬

𝑥$
𝑬

Agenda

• Background
• Contextualized embeddings
• Transformers – a shallow introduction
• Subword tokenization – recap

• Large Encoder LMs with Transformers

8

Transformers

§ Originally introduced in neural machine translation and now widely used for
sequence encoding and decoding in various tasks

Attention is all you need. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Polosukhin, I. (2017). In NeurIPS.
Learn more: http://jalammar.github.io/illustrated-transformer/ https://jalammar.github.io/illustrated-gpt2/

Transformer encoder Transformer decoder

Feed Forward Neural Network

Multi-head Self-Attention

Feed Forward Neural Network

Multi-head Encoder-Decoder
Attention

Masked Multi-head Self-Attention

http://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-gpt2/

9

Contextualized word/token embeddings with
Transformer Encoder
§ Each encoded vector is the contextual embedding of the

corresponding input vector

𝒆! 𝒆" 𝒆#

%𝒆! %𝒆" %𝒆#

𝒆$

%𝒆$

𝑥!
𝑬

𝑥"
𝑬

𝑥#
𝑬

𝑥$
𝑬

Feed Forward Neural Network

Multi-head Self-Attention

Transformer Encoder

10

Position embeddings

§ Transformers are agnostic to the position of input tokens
- For a given token, a context token in long-distance has the same effect

as one in short-distance (no locality bias)
- The positions of tokens in a sequence can be highly important in some

tasks

Position embeddings – a common approach in Transformers:
§ Create embeddings representing positions in a sequence, and add

the values of the position embeddings to the token embeddings at
corresponding positions
- Position embedding is usually created using a sine/cosine function

• It can also be learned end-to-end with the model parameters
- Using position embeddings, the same token at different positions of a

sequence will have different final representations

11

Position embeddings – examples

Source: http://jalammar.github.io/illustrated-transformer/

Position embedding
for location 0

Values from -1
(dark) to +1 (light)

Dimensions (512)

Position
embeddings

Position embedding
for location 20

An example of
embeddings with
four dimensions:

http://jalammar.github.io/illustrated-transformer/

Agenda

• Background
• Transformers
• Transformers – a shallow introduction
• Subword tokenization – recap

• Large Encoder LMs with Transformers

13

Subwords – recap

§ Words with low frequencies naturally observe a small number of contexts, and
most probably end up with worse representations
- E.g., “structurally” appears rarely, however, its meaning can be inferred

from “structure” which may appear much more often in a corpus
• Lemmatizers and stemmers turn “structurally” and “structure” to the same stem (like

“structur”) but they the differences between these two

§ Ways to define subwords
- Fixed-length like character tri-grams in fastText
- Variable-length like Byte Pair Encoding, WordPiece, and SentencePiece

§ Subword tokenizer
- Training time: creates a vocabulary list of subwords using corpus statistics,
- Tokenization/Decoding time: uses this vocabulary list to decompose a

given word (or a given sequence) to subwords

14

Subword tokenization
Byte Pair Encoding (BPE)

§ The core idea of BPE comes from information theory and
compression

§ BPE (or in general subword tokenizers) consist of two steps:
1. Training: Learning a vocabulary list of subwords from a given

corpus
2. Tokenization (decoding): tokenize a given text using the

stored subwords vocabulary list

Reference: Sennrich, R., Haddow, B., & Birch, A.. Neural Machine Translation of Rare Words with Subword Units.
In proceedings of ACL (2016)

15

Byte Pair Encoding (BPE)

Sketch of training:
1. Pre-tokenize the training corpus, for instance simply by splitting on

white spaces
2. Start from a vocabulary list with all single characters
3. Create a dictionary of words and counts from the pre-tokenized

training corpus
4. Add special character “_” to the end of each word in the dictionary
5. Expand the vocabulary list:

- Find the most frequent pair of characters in the dictionary of
words

- Merge the characters, and add them to the vocabulary list
- Repeat step 5 till some limits on vocabulary size are reached

Learn more at “Speech and Language Processing (3rd ed.) D. Jurafsky and J. H. Martin”, section 2.4.3.
https://web.stanford.edu/~jurafsky/slp3/2.pdf (the resource of the example)

https://web.stanford.edu/~jurafsky/slp3/2.pdf

16

Byte Pair Encoding – example

§ Consider a tiny training corpus that leads to the following dictionary
and vocabulary list

17

First merge

Next merge

18

Next merge

If we continue

19

WordPiece tokenization

§ WordPiece is a descendent of BPE and has the following
differences:

§ Selecting character pairs for merging in WordPiece is based on
“minimizing the language model likelihood of the training data”*

§ WordPiece indicates internal subwords with “##” special symbol
- E.g. “unavoidable” → [“un”, “##avoid”, “##able”]

* For more details look into the original paper:
Schuster, M., & Nakajima, K. (2012). Japanese and Korean voice search.
In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

20

WordPiece tokenization

§ Tokenization (decoding) is done using MaxMatch algorithm
- A greedy longest-match-first algorithm
- MaxMatch choses the longest token in the vocabulary that matches the

given word
- After a match, it repeats the previous step with the remainder of the word

21

WordPiece tokenization

§ WordPiece with MaxMatch decoding is used in some models such as BERT

Example

Original sequence:
“natural language processing”

pre-tokenization:
[“natural”, “language”, “processing”]

subword tokenization:
[“natural”, “lang”, “##uage”, “process”, “##ing”]

Agenda

• Background
• Contextualized embeddings
• Transformers – a shallow introduction
• Subword tokenization – recap

• Large Encoder LMs with Transformers

23

Large Language Models (LLMs)

§ Encoder LLMs
- Model sees whole the sequence (past and future)
- Input sequence is encoded into contextualized embeddings
- Additionally, some models provide a sequence embedding

or a pair-sequence embedding
- Representative models: BERT, RoBERTa, XLM-*, ELMo

§ Decoder LLMs
- “Normal” LM objective: predict the next token conditioned on

the previous tokens (unidirectional)
- Training and inference is auto-regressive (one after each

other)
- Representative models: GPT-x

§ Encoder-Decoder LLMs
- The encoder encodes whole the input (bidirectional)
- The decoder generates the output in auto-regressive

fashion
- Representative models: T5, BART

24

BERT
Bidirectional Encoder Representation from Transformers

§ BERT is a pre-trained Encoder LLM which …
- is composed of multi-layers of Transformer Encoder,
- uses WordPiece for tokenization,
- trained with a Masked Language Model objective,
- provides contextualized word embeddings …
- as well as a sequence or pair-sequence embedding for one/multiple

sequence(s) using sentence pair encoding

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019, June). BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. In Proc. of NAACL-HLT (2019)

25

Input embeddings (for one sequence)

Special token [CLS] specifies
the embedding for encoding

whole the sequence

dog

Fixed pre-defined
vectors which indicate

the position of each
word in the sequence

Special token [SEP]
specifies the end of the

sequence

• The input to Encoder Transformers is in fact the element-wise sum
of three types of embeddings

• Token embeddings, taken from a static subword embedding matrix (learnable)
• Sentence embeddings (fixed)
• Transformer position embeddings (fixed)

An embedding which
specifies that all

words comes from
sequence A

26

Masked Language Model (MLM)

§ “Normal” language modeling objective: move from left to right (or right
to left) and in each step predict the next token
- The LM can see the full context on processing the last token
- Good fit for language generation but suboptimal for sequence encoding

§ Masked Language Model objective masks out 𝑘% of the tokens of
input sequence, passes the masked sequence to the model, and
predicts the masked words in output

Example
sequence: Jim made spaghetti for his girlfriend and he was very proud!
Input: Jim made [MASK] for his girlfriend and [MASK] was very proud!

predict: spaghetti he

27

BE
R

T

MLM training

𝒆! 𝒆" 𝒆#

%𝒆! %𝒆" %𝒆#

𝒆$

%𝒆$

𝑥!
𝑬

[MASK]

𝑬
𝑥#
𝑬

𝑥$

𝑬
⊕ ⊕ ⊕ ⊕

(𝒚

𝑼

ℒ = − log 0𝑦%! = − log 0𝑦&'(

𝑃 𝑥# masked sequence = 0𝑦%!

Corpus:
a fluffy cat sunbathes
A training datapoint:
a fluffy [MASK] sunbathes

Transformer Encoder

Transformer Encoder

Transformer Encoder

…

28

BERT Training setting

§ Trained using MLM on Wikipedia + BookCorpus

§ Dictionary size is ~30K tokens (due to WordPiece subword
tokenization)

§ Specs of some provided pre-trained models:
- BERT-Tiny: 2-layer, 128-hidden, 2-head, ~4M parameters*
- BERT-Mini: 4-layer, 256-hidden, 4-head, ~11M parameters*
- BERT-Base: 12-layer, 768-hidden, 12-head, ~110M parameters*
- BERT-Large: 24-layer, 1024-hidden, 16-head, ~340M parameters*

§ Some resources:
- https://github.com/google-research/bert
- Library to have BERT models in PyTorch: https://huggingface.co/transformers/

* For comparison, a (static) word embedding like word2vec with vocabulary size 200K and vector size 768 has 153M parameters

https://github.com/google-research/bert
https://huggingface.co/transformers/

29

BERT fine-tuning for one sequence

[CLS] x1 x2 x3 … xn [SEP]

𝑾

+𝒚 = 𝑃 𝑌 𝑋 = softmax(𝒐𝑾 + 𝒃)

𝒐
Output embedding of [CLS]
provides a compositional

embedding of the sequence

30

Sentence (Sequence) pair encoding

§ Many NLP tasks need to calculate the relation between two
sequences
- E.g., question answering, information retrieval, natural language

inference, paraphrasing, etc.

§ During training, BERT also learns the relationships between two
sequences using an additional binary classifier objective
- The binary classifier take the output embedding of [CLS]
- It predicts whether Sequence B is the actual sequence that proceeds

Sequence A or a random sentence
- This classifier is jointly optimized with the MLM objective

§ If one sequence is given, the output of [CLS] is sequence embedding
§ If two sequences are given, the output of [CLS] is the feature vector

of the relation between the sequences

31

Input to BERT – two sequences

dog

Sentence embeddings make a
distinction between the embeddings

of Sentence A and Sentence B

32

BERT Fine-tuning for Text Matching/Similarity tasks

[CLS] x1(1) … xn(1) [SEP] x1(2) … xm(2) [SEP]

𝒘

>𝑦 = similarity 𝑋($), 𝑋(#) = 𝜎(𝒐𝒘)

𝒐

Output embedding of the
[CLS] token encodes the
relation between the input

sequences

Subwords of sequence 𝑋(")
Subwords of the sequence 𝑋($)

33

Fine tuning – inputs in different scenarios

34

Some evaluation results

§ A generic, deep, pre-trained model that can simply be
plugged in (almost) any NLP task!

