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Neural n-gram Language Model – recap 

§ n-gram Language Model: 𝑃 𝑥 !"# 𝑥 !$%"& , … , 𝑥 !

A data item in training data:
(a fluffy cat, sunbathes) 𝑥("#$) 𝑥("#&) 𝑥(")

𝒆("#$) 𝒆("#&) 𝒆(")

𝒉

⨁

$𝒚(")

𝑬 𝑬 𝑬

𝑼

𝑾
𝒆

𝑃 𝑥 !"# a &luffy cat = .𝑦' !"#
!

𝑃 sunbathes a *luffy cat = 0𝑦sunbathes
$
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Neural skip-gram Language Model

§ A skip-gram Language Model, …
- instead of predicting the next word as in usual LMs, …
- … predicts the probability of appearance of a context-

word 𝑐 in a window surrounding the word 𝑣

𝑃(𝑐|𝑣)

𝑥 "

𝑥 "#&𝑥 "#$ 𝑥 "'& 𝑥 "'$

word 𝑣

context-word(s) 𝑐

𝑃 𝑥 !"# 𝑥 ! =?

𝑃 𝑥 !"$ 𝑥 ! =?

𝑃 𝑥 !%$ 𝑥 ! =?

𝑃 𝑥 !%# 𝑥 ! =?
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Tesgüino

drink

fermented
Tarahumara people

corn

sacred

ritual

Mexico

beer

𝑃 drink Tesgüino =?
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Training data 𝒟

§ Creating training data with a window size of 2 in the form of 
(word , context–word), namely (𝑣 , 𝑐) :

Tarahumara people drink Tesgüino followingwhile rituals …

Tarahumara people drink Tesgüino followingwhile rituals …

Tarahumara people drink Tesgüino followingwhile rituals …

(Tarahumara, people)
(Tarahumara, drink)

(people, Tarahumara)
(people, drink)
(people, Tesgüino)

(Tesgüino, people)
(Tesgüino, drink)
(Tesgüino, while)
(Tesgüino, following)

…
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Tesgüino

𝑃 𝑐 𝑣 = 𝑃(drink|Tesgüino)

𝑣

𝒆)

Training data: (Tesgüino, drink)

$𝒚
𝑼𝑑×𝑁

𝑬𝑁×𝑑

Neural word embeddings from neural skip-gram 
Language Model

The model’s parameters 𝑬 and 𝑼 are in 
fact two sets of word embeddings:
• 𝑬 → Encoder word embedding
• 𝑼 → Decoder word embedding 
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Formulation

Encoder
§ From words to word embeddings: 

- One-hot vector of word 𝑣 is 𝒗 vector: 𝒗→ 1×𝑁
• In 𝒗, all values are 0 and only the value corresponding to the word 
𝒗 is set to 1

- Encoder word embedding: 𝒆' = 𝒗𝑬 𝒆(→ 1×𝑑
• In practice, 𝒆( is achieved by fetching the embedding of 𝑣 from 𝑬

(no need for constructing 𝒗)

𝑁 size of vocabulary
𝑑 embeddings dimension
Parameters are shown in red

𝑬 → 𝑁×𝑑
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Formulation

Decoder
§ Predicted logits:

𝒛 = 𝒆'𝑼 𝒛→ 1×𝑁

§ Predicted probability distribution:

$𝒚 = softmax 𝒛 ,𝒚→ 1×𝑁

§ Probability of an arbitrary context-word 𝑐 given the word 𝑣:

𝑃 𝑐 𝑣 = 4𝑦.
Putting all together:

𝑃 𝑐 𝑣 = softmax 𝒆'𝑼 . =
exp 𝒆'𝒖.

∑.̃∈𝕍 exp 𝒆'𝒖.̃

𝑁 size of vocabulary
𝑑 embeddings dimension
Parameters are shown in red

𝑼 → 𝑑×𝑁



11

Tesgüino

𝑬

𝑼

𝑃 𝑐 𝑣 = 𝑃(drink|Tesgüino)

𝑣

𝒆'

$𝒚

Training data: (Tesgüino, drink)

ℒ = − log𝑃 𝑐 𝑣

Loss function
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Skip-gram Language Model – all together

§ Probability distribution of output words:

𝑃 𝑐 𝑣 =
exp 𝒆6𝒖7

∑ ̃7∈𝕍 exp 𝒆6𝒖 ̃7

- In the example: 𝑃 drink Tesgüino =
()* 𝒆%&'(ü*+,𝐮-.*+/
∑01∈𝕍 ()* 𝒆%&'(ü*+,𝒖01

§ Loss is the NLL over all training data:

ℒ = −𝔼 H,I ~𝒟 log 𝑃 𝑐 𝑣
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Training data: (Tesgüino, drink)

Linear activation

Encoder embedding
*word embedding*

Decoder embedding
*context-word embedding*

Input Layer
(One-hot encoder)

Output Layer
(softmax)

Another view!

1×𝑁
1×𝑑

1×𝑁

𝑃(drink|Tesgüino)
Forward pass

Backpropagation

𝑼𝑑×𝑁𝑬𝑁×𝑑

https://web.stanford.edu/~jurafsky/slp3/


14Encoder embedding

Märzen

Tesgüino

Yet another view!
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Märzen

Tesgüino

Yet another view!



16Encoder embedding Decoder embedding

Märzen

Tesgüino

Yet another view!
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drink Märzen

Tesgüino

Encoder embedding Decoder embedding

Yet another view!
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drink Märzen

Tesgüino

Encoder embedding Decoder embedding

Yet another view!
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drink

- Training data: (Tesgüino, drink)
- Update vectors to maximize 𝑃(drink|Tesgüino)

Märzen

Tesgüino

Encoder embedding Decoder embedding

Yet another view!
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Loss function – NLL + softmax

𝑃 𝑐 𝑣 =
exp 𝒆'𝒖.

∑.̃∈𝕍 exp 𝒆'𝒖.̃

ℒ = −𝔼 ',. ~𝒟 log 𝑃 𝑐 𝑣

ℒ = −𝔼 ',. ~𝒟 log
exp 𝒆'𝒖.

∑.̃∈𝕍 exp 𝒆'𝒖.̃

ℒ = −𝔼 ',. ~𝒟 𝒆'𝒖. − log?
.̃∈𝕍

exp 𝒆'𝒖.̃

calculating this normalization term can 
become a computation bottleneck!

when considering the very high number of the possible training 
data pairs in a corpus!
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word2vec: skip-gram with Negative Sampling

§ word2vec is an efficient and effective algorithm that proposes Negative 
Sampling method to define loss

Core idea in Negative Sampling (a form of contrastive learning): 
§ Consider two data distributions that generate (word , context–word) pairs: 

1. A genuine distribution that generates the training data pairs → 𝒟
2. A noisy distribution that generates random pairs → L𝒟

§ Objective: given a pair (word , context–word), the model predicts whether 
the pair comes from the genuine or noisy distribution 

- Negative Sampling turns the multi-class classification task to binary classification

Genuine 
distribution 

𝒟

(Tesgüino,drink)

(Tesgüino,beer)

(Tesgüino,Mexico)

Positive 
samples Noisy 

distribution 
*𝒟

(Tesgüino,tactual)

(Tesgüino,ruralizes)

(Tesgüino,delve)

Negative 
samples 

Mikolov et al.. (2013). Efficient estimation of 
word representations in vector space. arXiv
preprint arXiv:1301.3781.
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word2vec – architecture 

§ Starting from neural skip-gram Language Model

Linear activation

Encoder embedding
*word embedding*

Decoder embedding
*context-word embedding*

1×𝑁 1×𝑁

𝑼𝑑×𝑁
𝑬𝑁×𝑑

𝑣 𝑐
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Negative Sampling – prediction probability

§ Standard skip-gram approach calculates 𝑃 𝑐 𝑣
- Probability for a multi-class classification task

§ Negative Sampling instead calculates the probability below

𝑃 𝑦 = 1 𝑣, 𝑐
Probability that 𝑣, 𝑐 comes from the genuine data distribution 

Probability for a binary classification task

𝑼𝑑×𝑁
𝑬𝑁×𝑑

𝑃 𝑦 = 1 𝑣, 𝑐
𝑃 𝑦 = 1 Tesgüino, drink

𝑣 𝑐
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𝑷 𝒚 = 𝟏 𝒗, 𝒄

𝑃 𝑦 = 1 𝑣, 𝑐
Probability that 𝑣, 𝑐 comes from the genuine data distribution 

Probability for a binary classification task

§ 𝑃 𝑦 = 1 𝑣, 𝑐 is defined as sigmoid 𝜎 of the logit 𝒆/𝒖0:

𝑃 𝑦 = 1 𝑣, 𝑐 = 𝜎(𝒆'𝒖.)

𝒖.
(dot product) 𝑃 𝑦 = 1 𝑣, 𝑐

= 𝜎(𝒆'𝒖.)
𝜎

𝒆'
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Negative Sampling training data and objective
(or generally in contrastive learning)

Training data
§ Training data consists of two sets of samples:

- Positive sample: a pair 𝑣, 𝑐 from the genuine distribution 𝒟
• 𝒟 is the set of all 𝑣, 𝑐 pairs appearing in the training corpus

- Negative sample: a pair 𝑣, �̃� from the noisy distribution L𝒟
• E𝒟 is a set of randomly selected 𝑣, �̃� pairs (why?)
• E𝒟 is created by randomly sampling from a smoothed unigram 

distribution of the words in the training corpus
Objective
§ Train a model that distinguishes between the positive and negative 

samples, namely:
- increase the probability of positive samples 𝑃 𝑦 = 1 𝑣, 𝑐 and …
- decrease the probabilities of 𝑘 negative samples 𝑃 𝑦 = 1 𝑣, �̃�

• 𝑘 is usually between 2 to 20
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Loss function

§ Objective:
- increase the probability of positive samples, 𝑃 𝑦 = 1 𝑣, 𝑐 and …
- decrease the probabilities of 𝑘 negative samples, 𝑃 𝑦 = 1 𝑣, �̃�

§ Loss function:

ℒ = −𝔼 ',. ~𝒟 log 𝑃 𝑦 = 1 𝑣, 𝑐 − ?
.̃~E𝒟

G HIJKL

log 𝑃 𝑦 = 1 𝑣, �̃�

ℒ = −𝔼 ',. ~𝒟 log 𝜎 𝒆'𝒖. − ?
.̃~E𝒟

G HIJKL

log 𝜎 𝒆'𝒖.̃

positive samples negative samples
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drink

Tesgüino

- Train sample: (Tesgüino, drink)

Encoder embedding Decoder embedding
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drink

Tesgüino

- Train sample: (Tesgüino, drink)
- 𝑘 = 2 negative context-words

Encoder embedding Decoder embedding
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drink

Tesgüino

- Train sample: (Tesgüino, drink)
- 𝑘 = 2 negative context-words �̃�
- Update vectors to 

- Increase 𝑃 𝑦 = 1 Tesgüino, drink
- Decrease 𝑃(𝑦 = 1|Tesgüino, �̃�)

Encoder embedding Decoder embedding
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Final words!

§ Negative Sampling turns the problem from multi-class 
classification to binary classification
- Softmax is a good choice for training Language Models, namely to 

estimate 𝑃 𝑣 context
- Negative Sampling is shown to be effective for training good 

embeddings

§ Negative Sampling is a biased approximation of softmax
- Noisy Contrastive Estimation (the parent of Negative Sampling) 

is an unbiased approximation of softmax



33

Three word embedding models in one frame!

𝑼
𝑑×𝑁

𝑬
𝑁×𝑑

context-word vectors
𝑼

𝑑×𝑁

𝑁×𝑑
word vectors

𝑬
𝑁×𝑁words

context-words

≈

𝑑

𝑑
𝑁×𝑁 𝑁×𝑁 𝑁×𝑁

𝑁×𝑑 𝑑×𝑑 𝑑×𝑁

truncated word 
vectors
𝑼&

truncated 
eigenvalues

𝜮&

truncated context-
word vectors

𝑽&'

𝑁×𝑁words

context-words

≈PPMI+SVD:

GloVe:

word2vec skip-gram:
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From words to subwords embeddings

§ word2vec and the other word embeddings so far define one vector 
representation for every word in the defined dictionary

§ However, words with low frequencies naturally observe a small 
number of contexts, and therefore most probably end up with 
weaker semantic representations

- For example, the word “structure” will probably have a better representation 
than a word like “structurally” which typically appears less frequently in corpora

§ The discussed word embeddings also do not have a principled way 
to approach out-of-vocabularies (OOV)

§ One way to approach these limitations is by using subwords
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Subwords embeddings

Principle idea of subwords embeddings 

§ Using the statistics of the corpus, create a dictionary of subwords
§ Assign an embedding to each subword
§ Given a word, first break it into its subwords
§ Compose the embedding of the word from the embeddings of its subwords

Pros:
§ Subword embeddings may provide better word embeddings due to a better 

generalization, particularly when a word lacks sufficient training data
- Inferring the embedding of “structurally” from “structur”, “al”, and “ly”

§ OOVs also have embeddings, composed from their subwords

Cons: 
§ Composing words from subwords may lead to some errors and ambiguities

- E.g., unseen named entities (like the name of a city) are also provided with the semantic 
vector, composed from its subwords. This may imply wrong semantic relations
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fastText – subwords 

§ fastText defines the set of subwords of a word as the n-gram 
characters of the word

- Start and end of the word are indicated with < and >
- The word itself is also added to the set of subwords of the word
- 3-gram is used in practice

Examples based on 3-gram characters:
- Word 𝑣:

where

- 𝔾( – the set of subwords of 𝑣:
{<wh, whe, her, ere, re>, <where>}

- Word 𝑣:
Highest

- 𝔾(: 
{<hi, hig, igh, ghe, hes, est, st>, <highest>}

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for 
Computational Linguistics, 5, 135-146. https://aclanthology.org/Q17-1010.pdf

https://aclanthology.org/Q17-1010.pdf
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fastText – formulation

§ Process the corpus to create the dictionary of subwords
- The dictionary consists 3-gram characters plus the words themselves

§ Create subword encoder embeddings 𝑬 for all the subwords
§ The encoder embedding of a word is calculated as the sum of its 

encoder subword embeddings: 

𝒆6 = +
;∈𝔾)

𝒆;

§ Decoder word embeddings 𝑼 remain the same as word2vec, namely 
a set embeddings for the words in the corpus

§ Model training is also the same way as word2vec using Negative 
Sampling

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for 
Computational Linguistics, 5, 135-146. https://aclanthology.org/Q17-1010.pdf

https://aclanthology.org/Q17-1010.pdf
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word2vec skip-gram – recall 
Training data:

(𝑣 = highest , 𝑐 = record)

(dot product) 𝑃 𝑦 = 1 𝑣, 𝑐 =
𝜎(𝒆'𝒖.)

𝜎

𝒆' 𝒖.

𝒖RKSTRU𝒆VIWVKLH

ℒ = − log 𝜎 𝒆(𝒖* − ]
̃*~-𝒟

/ 01234

log 𝜎 𝒆(𝒖 ̃*
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fastText – architecture 
Training data:

(𝑣 = highest , 𝑐 = record)
(𝔾/ = {<hi, hig, igh, ghe, hes, est, st>, <highest>} , 𝑐 = record)

𝑃 𝑦 = 1 𝑣, 𝑐 =
𝜎(𝒆'𝒖.)

𝜎

𝒆' = ?
^∈𝔾.

𝒆^

Embeddings of the subwords in 𝔾(

…

𝒆561

𝒆617

𝒆561763408

(dot product)

𝒖.

𝒖RKSTRU

ℒ = − log 𝜎 𝒆(𝒖* − ]
̃*~-𝒟

/ 01234

log 𝜎 𝒆(𝒖 ̃*
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Better generalization with fastText

§ In comparison with word2vec, fastText …
- generalizes faster in training
- generally provides better embeddings

See details:
Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for 
Computational Linguistics, 5, 135-146. https://aclanthology.org/Q17-1010.pdf

https://aclanthology.org/Q17-1010.pdf
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Sentence embedding

Problem definition
§ Given a “sentence” 𝑆 with length 𝑆 , consisting of the words

𝑣_, 𝑣`, … , 𝑣 a
with corresponding word vectors

𝒆'/ , 𝒆'0 , … , 𝒆' 1
create the sentence embedding: 𝒆a

§ “Sentence” here can refer to
- Any sequence of words with any arbitrary length
- An actual sentence in language
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Sentence embedding

§ First approach … simply average!

𝒆a =
1
𝑆
?
'∈a

𝒆'

- As done in Assignment 2 and 3

§ What are the possible limitations of this approach?
- The word embeddings are not trained for the purpose of creating a sentence 

embeddings
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sent2vec

§ A simple and efficient method for creating sentence representations

§ sent2vec starts from subword/word embeddings and calculates a 
sentence embedding as the average of subword/word embeddings:

𝒆a =
1
𝑆
?
'∈a

𝒆'

§ sent2vec trains subword/word embeddings (𝑬) in the way that they 
fulfill the objective of creating effective sentence embeddings

Pagliardini, Matteo, Prakhar Gupta, and Martin Jaggi. "Unsupervised Learning of Sentence Embeddings Using Compositional n-Gram Features." Proceedings of the 
2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2018.
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Training

§ Parameters of sent2vec – similar to fastText/word2vec – consists of 
subword/word embeddings (𝑬) and context-word embeddings (𝑼)

§ Given a sentence 𝑆, a training data point is defined as the pair of:

(set of subwords in 𝑆 while putting out the word 𝑣 , left-out word 𝑣)
(𝑆\{𝑣} ,	𝑣)

§ During training, 𝒆1\{/}, the sentence embedding without the left-out 
word, aims to predict the left-out word 𝑣

§ The optimization is done with Negative Sampling
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Training data

§ Training data is in the form of (𝑆\{𝑣} , 𝑣)

𝑆 = Tarahumara people drink Tesgüino during the rituals

Some training data points in 𝒟:

(people drink Tesgüino during the rituals , Tarahumara)
(Tarahumara drink Tesgüino during the rituals , people)
(Tarahumara people Tesgüino during the rituals , drink)
(Tarahumara people drink during the rituals , Tesgüino)
(Tarahumara people drink Tesgüino the rituals , during)
…
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Architecture

Training data:
(𝑆\{𝑣} = Tarahumara people Tesgüino during the rituals , 𝑣 = drink)

(𝑆\{𝑣} = {Tarahumara,people,Tesgüino,during,the,rituals}*, 𝑣 = drink)

(dot product) 𝑃 𝑦 = 1 𝑆\{𝑣}, 𝑣 =
𝜎(𝒆a\{'}𝒖')

𝜎

𝒆a\{'} =
1

𝑆\{𝑣}
?

^∈a\{'}

𝒆^

…

𝒆9:;:6<2:;:

𝒆=3>=?3

𝒆;10<:?4

𝒖'

𝒖URIfg

* Encoder tokenization can also be 
done in subword level as in fastText
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Negative Sampling loss

§ Negative Sampling loss
- increases 𝑃 𝑦 = 1 𝑆\{𝑣}, 𝑣 probability for positive sample (𝑆\{𝑣}, 𝑣)
- decreases 𝑃 𝑦 = 1 𝑆\{𝑣}, Z𝑣 probability for 𝑘 negative samples (𝑆\{𝑣}, Z𝑣)

§ Loss function:

ℒ = −𝔼 a\{'},' ~𝒟 log 𝜎 𝒆a\{'}𝒖' − ?
h'~E𝒟

G HIJKL

log 𝜎 𝒆a\{'}𝒖i𝒗

positive sample 𝑘 negative samples


