
Institute of
Computational
Perception

344.175 VL: Natural Language Processing
Neural Word and Sentence Embeddings

Navid Rekab-saz

Email: navid.rekabsaz@jku.at
Office hours: https://navid-officehours.youcanbook.me

Winter semester 2022/23

mailto:navid.rekabsaz@jku.at
https://navid-officehours.youcanbook.me/

Agenda

• word2vec
• Neural skip-gram Language Model
• Negative sampling

• fastText
• Sentence embedding with sent2vec

Agenda

• word2vec
• Neural skip-gram Language Model
• Negative sampling

• fastText
• Sentence embedding with sent2vec

4

Neural n-gram Language Model – recap

§ n-gram Language Model: 𝑃 𝑥 !"# 𝑥 !$%"& , … , 𝑥 !

A data item in training data:
(a fluffy cat, sunbathes) 𝑥("#$) 𝑥("#&) 𝑥(")

𝒆("#$) 𝒆("#&) 𝒆(")

𝒉

⨁

$𝒚(")

𝑬 𝑬 𝑬

𝑼

𝑾
𝒆

𝑃 𝑥 !"# a &luffy cat = .𝑦' !"#
!

𝑃 sunbathes a *luffy cat = 0𝑦sunbathes
$

5

Neural skip-gram Language Model

§ A skip-gram Language Model, …
- instead of predicting the next word as in usual LMs, …
- … predicts the probability of appearance of a context-

word 𝑐 in a window surrounding the word 𝑣

𝑃(𝑐|𝑣)

𝑥 "

𝑥 "#&𝑥 "#$ 𝑥 "'& 𝑥 "'$

word 𝑣

context-word(s) 𝑐

𝑃 𝑥 !"# 𝑥 ! =?

𝑃 𝑥 !"$ 𝑥 ! =?

𝑃 𝑥 !%$ 𝑥 ! =?

𝑃 𝑥 !%# 𝑥 ! =?

6

Tesgüino

drink

fermented
Tarahumara people

corn

sacred

ritual

Mexico

beer

𝑃 drink Tesgüino =?

7

Training data 𝒟

§ Creating training data with a window size of 2 in the form of
(word , context–word), namely (𝑣 , 𝑐) :

Tarahumara people drink Tesgüino followingwhile rituals …

Tarahumara people drink Tesgüino followingwhile rituals …

Tarahumara people drink Tesgüino followingwhile rituals …

(Tarahumara, people)
(Tarahumara, drink)

(people, Tarahumara)
(people, drink)
(people, Tesgüino)

(Tesgüino, people)
(Tesgüino, drink)
(Tesgüino, while)
(Tesgüino, following)

…

8

Tesgüino

𝑃 𝑐 𝑣 = 𝑃(drink|Tesgüino)

𝑣

𝒆)

Training data: (Tesgüino, drink)

$𝒚
𝑼𝑑×𝑁

𝑬𝑁×𝑑

Neural word embeddings from neural skip-gram
Language Model

The model’s parameters 𝑬 and 𝑼 are in
fact two sets of word embeddings:
• 𝑬 → Encoder word embedding
• 𝑼 → Decoder word embedding

9

Formulation

Encoder
§ From words to word embeddings:

- One-hot vector of word 𝑣 is 𝒗 vector: 𝒗→ 1×𝑁
• In 𝒗, all values are 0 and only the value corresponding to the word
𝒗 is set to 1

- Encoder word embedding: 𝒆' = 𝒗𝑬 𝒆(→ 1×𝑑
• In practice, 𝒆(is achieved by fetching the embedding of 𝑣 from 𝑬

(no need for constructing 𝒗)

𝑁 size of vocabulary
𝑑 embeddings dimension
Parameters are shown in red

𝑬 → 𝑁×𝑑

10

Formulation

Decoder
§ Predicted logits:

𝒛 = 𝒆'𝑼 𝒛→ 1×𝑁

§ Predicted probability distribution:

$𝒚 = softmax 𝒛 ,𝒚→ 1×𝑁

§ Probability of an arbitrary context-word 𝑐 given the word 𝑣:

𝑃 𝑐 𝑣 = 4𝑦.
Putting all together:

𝑃 𝑐 𝑣 = softmax 𝒆'𝑼 . =
exp 𝒆'𝒖.

∑.̃∈𝕍 exp 𝒆'𝒖.̃

𝑁 size of vocabulary
𝑑 embeddings dimension
Parameters are shown in red

𝑼 → 𝑑×𝑁

11

Tesgüino

𝑬

𝑼

𝑃 𝑐 𝑣 = 𝑃(drink|Tesgüino)

𝑣

𝒆'

$𝒚

Training data: (Tesgüino, drink)

ℒ = − log𝑃 𝑐 𝑣

Loss function

12

Skip-gram Language Model – all together

§ Probability distribution of output words:

𝑃 𝑐 𝑣 =
exp 𝒆6𝒖7

∑ ̃7∈𝕍 exp 𝒆6𝒖 ̃7

- In the example: 𝑃 drink Tesgüino =
()* 𝒆%&'(ü*+,𝐮-.*+/
∑01∈𝕍 ()* 𝒆%&'(ü*+,𝒖01

§ Loss is the NLL over all training data:

ℒ = −𝔼 H,I ~𝒟 log 𝑃 𝑐 𝑣

13https://web.stanford.edu/~jurafsky/slp3/

Training data: (Tesgüino, drink)

Linear activation

Encoder embedding
word embedding

Decoder embedding
context-word embedding

Input Layer
(One-hot encoder)

Output Layer
(softmax)

Another view!

1×𝑁
1×𝑑

1×𝑁

𝑃(drink|Tesgüino)
Forward pass

Backpropagation

𝑼𝑑×𝑁𝑬𝑁×𝑑

https://web.stanford.edu/~jurafsky/slp3/

14Encoder embedding

Märzen

Tesgüino

Yet another view!

15Encoder embedding

Märzen

Tesgüino

Yet another view!

16Encoder embedding Decoder embedding

Märzen

Tesgüino

Yet another view!

17

drink Märzen

Tesgüino

Encoder embedding Decoder embedding

Yet another view!

18

drink Märzen

Tesgüino

Encoder embedding Decoder embedding

Yet another view!

19

drink

- Training data: (Tesgüino, drink)
- Update vectors to maximize 𝑃(drink|Tesgüino)

Märzen

Tesgüino

Encoder embedding Decoder embedding

Yet another view!

20

Loss function – NLL + softmax

𝑃 𝑐 𝑣 =
exp 𝒆'𝒖.

∑.̃∈𝕍 exp 𝒆'𝒖.̃

ℒ = −𝔼 ',. ~𝒟 log 𝑃 𝑐 𝑣

ℒ = −𝔼 ',. ~𝒟 log
exp 𝒆'𝒖.

∑.̃∈𝕍 exp 𝒆'𝒖.̃

ℒ = −𝔼 ',. ~𝒟 𝒆'𝒖. − log?
.̃∈𝕍

exp 𝒆'𝒖.̃

calculating this normalization term can
become a computation bottleneck!

when considering the very high number of the possible training
data pairs in a corpus!

Agenda

• word2vec
• Neural skip-gram Language Model
• Negative sampling

• fastText
• Sentence embedding with sent2vec

22

word2vec: skip-gram with Negative Sampling

§ word2vec is an efficient and effective algorithm that proposes Negative
Sampling method to define loss

Core idea in Negative Sampling (a form of contrastive learning):
§ Consider two data distributions that generate (word , context–word) pairs:

1. A genuine distribution that generates the training data pairs → 𝒟
2. A noisy distribution that generates random pairs → L𝒟

§ Objective: given a pair (word , context–word), the model predicts whether
the pair comes from the genuine or noisy distribution

- Negative Sampling turns the multi-class classification task to binary classification

Genuine
distribution

𝒟

(Tesgüino,drink)

(Tesgüino,beer)

(Tesgüino,Mexico)

Positive
samples Noisy

distribution
*𝒟

(Tesgüino,tactual)

(Tesgüino,ruralizes)

(Tesgüino,delve)

Negative
samples

Mikolov et al.. (2013). Efficient estimation of
word representations in vector space. arXiv
preprint arXiv:1301.3781.

23

word2vec – architecture

§ Starting from neural skip-gram Language Model

Linear activation

Encoder embedding
word embedding

Decoder embedding
context-word embedding

1×𝑁 1×𝑁

𝑼𝑑×𝑁
𝑬𝑁×𝑑

𝑣 𝑐

24

Negative Sampling – prediction probability

§ Standard skip-gram approach calculates 𝑃 𝑐 𝑣
- Probability for a multi-class classification task

§ Negative Sampling instead calculates the probability below

𝑃 𝑦 = 1 𝑣, 𝑐
Probability that 𝑣, 𝑐 comes from the genuine data distribution

Probability for a binary classification task

𝑼𝑑×𝑁
𝑬𝑁×𝑑

𝑃 𝑦 = 1 𝑣, 𝑐
𝑃 𝑦 = 1 Tesgüino, drink

𝑣 𝑐

25

𝑷 𝒚 = 𝟏 𝒗, 𝒄

𝑃 𝑦 = 1 𝑣, 𝑐
Probability that 𝑣, 𝑐 comes from the genuine data distribution

Probability for a binary classification task

§ 𝑃 𝑦 = 1 𝑣, 𝑐 is defined as sigmoid 𝜎 of the logit 𝒆/𝒖0:

𝑃 𝑦 = 1 𝑣, 𝑐 = 𝜎(𝒆'𝒖.)

𝒖.
(dot product) 𝑃 𝑦 = 1 𝑣, 𝑐

= 𝜎(𝒆'𝒖.)
𝜎

𝒆'

26

Negative Sampling training data and objective
(or generally in contrastive learning)

Training data
§ Training data consists of two sets of samples:

- Positive sample: a pair 𝑣, 𝑐 from the genuine distribution 𝒟
• 𝒟 is the set of all 𝑣, 𝑐 pairs appearing in the training corpus

- Negative sample: a pair 𝑣, �̃� from the noisy distribution L𝒟
• E𝒟 is a set of randomly selected 𝑣, �̃� pairs (why?)
• E𝒟 is created by randomly sampling from a smoothed unigram

distribution of the words in the training corpus
Objective
§ Train a model that distinguishes between the positive and negative

samples, namely:
- increase the probability of positive samples 𝑃 𝑦 = 1 𝑣, 𝑐 and …
- decrease the probabilities of 𝑘 negative samples 𝑃 𝑦 = 1 𝑣, �̃�

• 𝑘 is usually between 2 to 20

27

Loss function

§ Objective:
- increase the probability of positive samples, 𝑃 𝑦 = 1 𝑣, 𝑐 and …
- decrease the probabilities of 𝑘 negative samples, 𝑃 𝑦 = 1 𝑣, �̃�

§ Loss function:

ℒ = −𝔼 ',. ~𝒟 log 𝑃 𝑦 = 1 𝑣, 𝑐 − ?
.̃~E𝒟

G HIJKL

log 𝑃 𝑦 = 1 𝑣, �̃�

ℒ = −𝔼 ',. ~𝒟 log 𝜎 𝒆'𝒖. − ?
.̃~E𝒟

G HIJKL

log 𝜎 𝒆'𝒖.̃

positive samples negative samples

28

drink

Tesgüino

- Train sample: (Tesgüino, drink)

Encoder embedding Decoder embedding

29

drink

Tesgüino

- Train sample: (Tesgüino, drink)
- 𝑘 = 2 negative context-words

Encoder embedding Decoder embedding

30

drink

Tesgüino

- Train sample: (Tesgüino, drink)
- 𝑘 = 2 negative context-words �̃�
- Update vectors to

- Increase 𝑃 𝑦 = 1 Tesgüino, drink
- Decrease 𝑃(𝑦 = 1|Tesgüino, �̃�)

Encoder embedding Decoder embedding

31

Final words!

§ Negative Sampling turns the problem from multi-class
classification to binary classification
- Softmax is a good choice for training Language Models, namely to

estimate 𝑃 𝑣 context
- Negative Sampling is shown to be effective for training good

embeddings

§ Negative Sampling is a biased approximation of softmax
- Noisy Contrastive Estimation (the parent of Negative Sampling)

is an unbiased approximation of softmax

33

Three word embedding models in one frame!

𝑼
𝑑×𝑁

𝑬
𝑁×𝑑

context-word vectors
𝑼

𝑑×𝑁

𝑁×𝑑
word vectors

𝑬
𝑁×𝑁words

context-words

≈

𝑑

𝑑
𝑁×𝑁 𝑁×𝑁 𝑁×𝑁

𝑁×𝑑 𝑑×𝑑 𝑑×𝑁

truncated word
vectors
𝑼&

truncated
eigenvalues

𝜮&

truncated context-
word vectors

𝑽&'

𝑁×𝑁words

context-words

≈PPMI+SVD:

GloVe:

word2vec skip-gram:

Agenda

• word2vec
• Neural skip-gram Language Model
• Negative sampling

• fastText
• Sentence embedding with sent2vec

35

From words to subwords embeddings

§ word2vec and the other word embeddings so far define one vector
representation for every word in the defined dictionary

§ However, words with low frequencies naturally observe a small
number of contexts, and therefore most probably end up with
weaker semantic representations

- For example, the word “structure” will probably have a better representation
than a word like “structurally” which typically appears less frequently in corpora

§ The discussed word embeddings also do not have a principled way
to approach out-of-vocabularies (OOV)

§ One way to approach these limitations is by using subwords

36

Subwords embeddings

Principle idea of subwords embeddings

§ Using the statistics of the corpus, create a dictionary of subwords
§ Assign an embedding to each subword
§ Given a word, first break it into its subwords
§ Compose the embedding of the word from the embeddings of its subwords

Pros:
§ Subword embeddings may provide better word embeddings due to a better

generalization, particularly when a word lacks sufficient training data
- Inferring the embedding of “structurally” from “structur”, “al”, and “ly”

§ OOVs also have embeddings, composed from their subwords

Cons:
§ Composing words from subwords may lead to some errors and ambiguities

- E.g., unseen named entities (like the name of a city) are also provided with the semantic
vector, composed from its subwords. This may imply wrong semantic relations

37

fastText – subwords

§ fastText defines the set of subwords of a word as the n-gram
characters of the word

- Start and end of the word are indicated with < and >
- The word itself is also added to the set of subwords of the word
- 3-gram is used in practice

Examples based on 3-gram characters:
- Word 𝑣:

where

- 𝔾(– the set of subwords of 𝑣:
{<wh, whe, her, ere, re>, <where>}

- Word 𝑣:
Highest

- 𝔾(:
{<hi, hig, igh, ghe, hes, est, st>, <highest>}

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for
Computational Linguistics, 5, 135-146. https://aclanthology.org/Q17-1010.pdf

https://aclanthology.org/Q17-1010.pdf

38

fastText – formulation

§ Process the corpus to create the dictionary of subwords
- The dictionary consists 3-gram characters plus the words themselves

§ Create subword encoder embeddings 𝑬 for all the subwords
§ The encoder embedding of a word is calculated as the sum of its

encoder subword embeddings:

𝒆6 = +
;∈𝔾)

𝒆;

§ Decoder word embeddings 𝑼 remain the same as word2vec, namely
a set embeddings for the words in the corpus

§ Model training is also the same way as word2vec using Negative
Sampling

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for
Computational Linguistics, 5, 135-146. https://aclanthology.org/Q17-1010.pdf

https://aclanthology.org/Q17-1010.pdf

39

word2vec skip-gram – recall
Training data:

(𝑣 = highest , 𝑐 = record)

(dot product) 𝑃 𝑦 = 1 𝑣, 𝑐 =
𝜎(𝒆'𝒖.)

𝜎

𝒆' 𝒖.

𝒖RKSTRU𝒆VIWVKLH

ℒ = − log 𝜎 𝒆(𝒖* −]
̃*~-𝒟

/ 01234

log 𝜎 𝒆(𝒖 ̃*

40

fastText – architecture
Training data:

(𝑣 = highest , 𝑐 = record)
(𝔾/ = {<hi, hig, igh, ghe, hes, est, st>, <highest>} , 𝑐 = record)

𝑃 𝑦 = 1 𝑣, 𝑐 =
𝜎(𝒆'𝒖.)

𝜎

𝒆' = ?
^∈𝔾.

𝒆^

Embeddings of the subwords in 𝔾(

…

𝒆561

𝒆617

𝒆561763408

(dot product)

𝒖.

𝒖RKSTRU

ℒ = − log 𝜎 𝒆(𝒖* −]
̃*~-𝒟

/ 01234

log 𝜎 𝒆(𝒖 ̃*

41

Better generalization with fastText

§ In comparison with word2vec, fastText …
- generalizes faster in training
- generally provides better embeddings

See details:
Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for
Computational Linguistics, 5, 135-146. https://aclanthology.org/Q17-1010.pdf

https://aclanthology.org/Q17-1010.pdf

Agenda

• word2vec
• Neural skip-gram Language Model
• Negative sampling

• fastText
• Sentence embedding with sent2vec

43

Sentence embedding

Problem definition
§ Given a “sentence” 𝑆 with length 𝑆 , consisting of the words

𝑣_, 𝑣`, … , 𝑣 a
with corresponding word vectors

𝒆'/ , 𝒆'0 , … , 𝒆' 1
create the sentence embedding: 𝒆a

§ “Sentence” here can refer to
- Any sequence of words with any arbitrary length
- An actual sentence in language

44

Sentence embedding

§ First approach … simply average!

𝒆a =
1
𝑆
?
'∈a

𝒆'

- As done in Assignment 2 and 3

§ What are the possible limitations of this approach?
- The word embeddings are not trained for the purpose of creating a sentence

embeddings

45

sent2vec

§ A simple and efficient method for creating sentence representations

§ sent2vec starts from subword/word embeddings and calculates a
sentence embedding as the average of subword/word embeddings:

𝒆a =
1
𝑆
?
'∈a

𝒆'

§ sent2vec trains subword/word embeddings (𝑬) in the way that they
fulfill the objective of creating effective sentence embeddings

Pagliardini, Matteo, Prakhar Gupta, and Martin Jaggi. "Unsupervised Learning of Sentence Embeddings Using Compositional n-Gram Features." Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2018.

46

Training

§ Parameters of sent2vec – similar to fastText/word2vec – consists of
subword/word embeddings (𝑬) and context-word embeddings (𝑼)

§ Given a sentence 𝑆, a training data point is defined as the pair of:

(set of subwords in 𝑆 while putting out the word 𝑣 , left-out word 𝑣)
(𝑆\{𝑣} ,	𝑣)

§ During training, 𝒆1\{/}, the sentence embedding without the left-out
word, aims to predict the left-out word 𝑣

§ The optimization is done with Negative Sampling

47

Training data

§ Training data is in the form of (𝑆\{𝑣} , 𝑣)

𝑆 = Tarahumara people drink Tesgüino during the rituals

Some training data points in 𝒟:

(people drink Tesgüino during the rituals , Tarahumara)
(Tarahumara drink Tesgüino during the rituals , people)
(Tarahumara people Tesgüino during the rituals , drink)
(Tarahumara people drink during the rituals , Tesgüino)
(Tarahumara people drink Tesgüino the rituals , during)
…

48

Architecture

Training data:
(𝑆\{𝑣} = Tarahumara people Tesgüino during the rituals , 𝑣 = drink)

(𝑆\{𝑣} = {Tarahumara,people,Tesgüino,during,the,rituals}*, 𝑣 = drink)

(dot product) 𝑃 𝑦 = 1 𝑆\{𝑣}, 𝑣 =
𝜎(𝒆a\{'}𝒖')

𝜎

𝒆a\{'} =
1

𝑆\{𝑣}
?

^∈a\{'}

𝒆^

…

𝒆9:;:6<2:;:

𝒆=3>=?3

𝒆;10<:?4

𝒖'

𝒖URIfg

* Encoder tokenization can also be
done in subword level as in fastText

49

Negative Sampling loss

§ Negative Sampling loss
- increases 𝑃 𝑦 = 1 𝑆\{𝑣}, 𝑣 probability for positive sample (𝑆\{𝑣}, 𝑣)
- decreases 𝑃 𝑦 = 1 𝑆\{𝑣}, Z𝑣 probability for 𝑘 negative samples (𝑆\{𝑣}, Z𝑣)

§ Loss function:

ℒ = −𝔼 a\{'},' ~𝒟 log 𝜎 𝒆a\{'}𝒖' − ?
h'~E𝒟

G HIJKL

log 𝜎 𝒆a\{'}𝒖i𝒗

positive sample 𝑘 negative samples

