344.175 VL: Natural Language Processing n-Gram Language Models

Navid Rekab-saz

Email: navid.rekabsaz@jku.at
Office hours: https://navid-officehours.youcanbook.me

Agenda

- n-gram language models
- Count-based n-gram LM
- Neural n-gram LM

Agenda

- n-gram language models
- Count-based n-gram LM
- Neural n-gram LM

Language Modeling

- Language Modeling is the task of predicting a word (or a subword or character) given a context:

$P(v \mid$ context $)$

- A Language Model (LM) can answer the questions like

$P(v \mid$ the students opened their $)$

Language Modeling - formal definition

- Given a sequence of words $x^{(1)}, x^{(2)}, \ldots, x^{(t)}$, a language model calculates the probability distribution of next word $x^{(t+1)}$ over all words in vocabulary

$$
P\left(x^{(t+1)} \mid x^{(1)}, \ldots, x^{(t-1)}, x^{(t)}\right)
$$

x is any word in the vocabulary $\mathbb{V}=\{v 1, v 2, \ldots, v N\}$

Note: this is the definition of directed left-to-right language models.

Why Language Modeling?

- Language Modeling is a benchmark task that helps us measure our progress on understanding language
- LMs are a subcomponent of many NLP tasks, especially those involving generating text or estimating the probability of text:
- Predictive typing
- Spelling/grammar correction
- Automatic speech recognition (ASR)
- Handwriting recognition
- Machine translation
- Summarization
- Dialogue /chatbots
- etc.

Direct usages for next word prediction

what is the |
what is the weather
what is the meaning of life
what is the dark web
what is the xfl
what is the doomsday clock
what is the weather today
what is the keto diet
what is the american dream
what is the speed of light
what is the bill of rights
Google Search I'm Feeling Lucky

Probability of a Text

- A Language Model can also assign probability to the validity a piece of text
- How probable it is that a sentence appears in a language.

$$
P\left(x^{(1)}, \ldots, x^{(T)}\right)=?
$$

- According to a (directed left-to-right) Language Model, the probability of a given text is computed by:

$$
\begin{gathered}
P\left(x^{(1)}, \ldots, x^{(T)}\right)=P\left(x^{(1)}\right) \times P\left(x^{(2)} \mid x^{(1)}\right) \times \cdots \times P\left(x^{(T)} \mid x^{(1)}, \ldots, x^{(T-1)}\right) \\
P\left(x^{(1)}, \ldots, x^{(T)}\right)=\prod_{t=1}^{T} P\left(x^{(t)} \mid x^{(1)}, \ldots, x^{(t-1)}\right)
\end{gathered}
$$

Usage in Automatic Speech Recognition (ASR)

N-Best List

n-gram Language Model

- Recall: a n-gram is a chunk of n consecutive words.
the students opened their \qquad
- unigrams: "the", "students", "opened", "their"
- bigrams: "the students", "students opened", "opened their"
- trigrams: "the students opened", "students opened their"
- 4-grams: "the students opened their"
- A n-gram Language Model collects frequency statistics of different n-grams in a corpus, and use these to calculate probabilities

N-gram LM as a conditional probability

- Markov assumption: decision at time t depends only on the current state
- In n-gram Language Model: predicting $x^{(t+1)}$ depends on preceding $n-1$ words
- Without Markovian assumption:

$$
P\left(x^{(t+1)} \mid x^{(1)}, \ldots, x^{(t-1)}, x^{(t)}\right)
$$

- n-gram Language Model:

$$
P\left(x^{(t+1)} \mid x_{n}^{(t-n+2)}, \ldots, x^{(t-1)}, x^{(t)}\right)
$$

Agenda

- n-gram language models
- Count-based n-gram LM
- Neural n-gram LM

n-gram LM using term counts

- Based on definition of conditional probability:

$$
P\left(x^{(t+1)} \mid x^{(t-n+2)}, \ldots, x^{(t)}\right)=\frac{P\left(x^{(t-n+2)}, \ldots, x^{(t)}, x^{(t+1)}\right)}{P\left(x^{(t-n+2)}, \ldots, x^{(t)}\right)}
$$

- The n-gram probability is calculated by counting n-grams and [$n-1]$-grams in a large corpus of text:

$$
P\left(x^{(t+1)} \mid x^{(t)}, \ldots, x^{(t-n+2)}\right) \approx \frac{\operatorname{count}\left(x^{(t-n+2)}, \ldots, x^{(t)}, x^{(t+1)}\right)}{\operatorname{count}\left(x^{(t-n+2)}, \ldots, x^{(t)}\right)}
$$

Example

- Example: learning a 4-gram Language Model
as the exam clerk started the clock, the students opened their \qquad

condition on this
$P(v \mid$ students opened their $)=\frac{P(\text { students opened their } v)}{P(\text { students opened their })}$
- For example, suppose that in the corpus:
- "students opened their" occurred 1000 times
- "students opened their books" occurred 400 times
- $P($ books \mid students opened their) $=0.4$
- "students opened their exams" occurred 100 times
- $P($ exams \mid students opened their $)=0.1$

Example - a bigram LM

- Trained on the data of a restaurant dialogue system

Bigram counts:		i	want	to	eat	chinese	food	lunch	spend
	i	5	827	0	9	0	0	0	2
	want	2	0	608	1	6	6	5	1
	to	2	0	4	686	2	0	6	211
	eat	0	0	2	0	16	2	42	0
	chinese	1	0	0	0	0	82	1	0
	food	15	0	15	0	1	4	0	0
	lunch	2	0	0	0	0	1	0	0
	spend	1	0	1	0	0	0	0	0
Bigram LM:		i	want	to	eat	chinese	food	lunch	spend
	i	0.002	0.33	0	0.0036	0	0	0	0.00079
	want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
	to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
	eat	0	0	0.0027	0	0.021	0.0027	0.056	0
	chinese	0.0063	0	0	0	0	0.52	0.0063	0
	food	0.014	0	0.014	0	0.00092	0.0037	0	0
	lunch	0.0059	0	0	0	0	0.0029	0	0
	spend	0.0036	0	0.0036	0	0	0	0	0

Count-based n-gram LMs - limitations

- Sparsity
- What if the denominator never occurred in corpus?
- Backoff: Probability is calculated for lower n-grams.
- E.g., in „students opened their v", if „students opened their" does not exist, language model probability is calculated for "opened their"
- Trigram is backed off to let a bigram do the job!
- What if the nominator never occurred in corpus?
- Approached by various smoothing methods

Laplace smoothing

- Add a small number like $\delta=1$ to the count of all words:

$$
\begin{gathered}
P\left(x^{(t+1)} \mid x^{(t-n+2)}, \ldots, x^{(t)}\right)=\frac{\#\left(x^{(t-n+2)}, \ldots, x^{(t)}, x^{(t+1)}\right)}{\#\left(x^{(t-n+2)}, \ldots, x^{(t)}\right)} \\
P\left(x^{(t+1)} \mid x^{(t-n+2)}, \ldots, x^{(t)}\right)=\frac{\#\left(x^{(t-n+2)}, \ldots, x^{(t)}, x^{(t+1)}\right)}{\sum_{v \subset V} \#\left(x^{(t-n+2)}, \ldots, x^{(t)}, v\right)} \\
P_{\text {Laplace }}\left(x^{(t+1)} \mid x^{(t-n+2)}, \ldots, x^{(t)}\right)=\frac{\#\left(x^{(t-n+2)}, \ldots, x^{(t)}, x^{(t+1)}\right)+1}{\sum_{v \subset V}\left(\#\left(x^{(t-n+2)}, \ldots, x^{(t)}, v\right)+1\right)} \\
P_{\text {Laplace }}\left(x^{(t+1)} \mid x^{(t-n+2)}, \ldots, x^{(t)}\right)=\frac{\#\left(x^{(t-n+2)}, \ldots, x^{(t)}, x^{(t+1)}\right)+1}{\left.\sum_{v \subset V} \#\left(x^{(t-n+2)}, \ldots, x^{(t)}, v\right)\right)+|V|} \\
P_{\text {Laplace }}\left(x^{(t+1)} \mid x^{(t-n+2)}, \ldots, x^{(t)}\right)=\frac{\#\left(x^{(t-n+2)}, \ldots, x^{(t)}, x^{(t+1)}\right)+1}{\#\left(x^{(t-n+2)}, \ldots, x^{(t)}\right)+|V|}
\end{gathered}
$$

Laplace smoothing example

Original bigram counts:		i	want	to	eat	chinese	food	lunch	spend
	i	5	827	0	9	0	0	0	2
	want	2	0	608	1	6	6	5	1
	to	2	0	4	686	2	0	6	211
	eat	0	0	2	0	16	2	42	0
	chinese	1	0	0	0	0	82	1	0
	food	15	0	15	0	1	4	0	0
	lunch	2	0	0	0	0	1	0	0
	spend	1	0	1	0	0	0	0	0

			i	want	to	eat	chinese	food	lunch
Bigram counts		spend							
added by 1:	i	6	828	1	10	1	1	1	3
	want	3	1	609	2	7	7	6	2
	to	3	1	5	687	3	1	7	212
	eat	1	1	3	1	17	3	43	1
	chinese	2	1	1	1	1	83	2	1
	food	16	1	16	1	2	5	1	1
	lunch	3	1	1	1	1	2	1	1
	spend	2	1	2	1	1	1	1	1

Laplace smoothing example

LM without			i	want	to	eat	chinese	food	lunch
smoothing:	spend								
	i	0.002	0.33	0	0.0036	0	0	0	0.00079
	want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
	to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
	eat	0	0	0.0027	0	0.021	0.0027	0.056	0
	chinese	0.0063	0	0	0	0	0.52	0.0063	0
	food	0.014	0	0.014	0	0.00092	0.0037	0	0
	lunch	0.0059	0	0	0	0	0.0029	0	0
	spend	0.0036	0	0.0036	0	0	0	0	0

LM with		i	want	to	eat	chinese	food	lunch	spend
Laplace	i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
smoothing:	want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
	to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
	eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
	chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
	food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
	lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
	spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Count-based n-gram LMs - limitations

- Sparsity
- What if the denominator never occurred in corpus?
- Backoff: Probability is calculated for lower n-grams.
- E.g., in „students opened their v", if „students opened their" does not exist, language model probability is calculated for "opened their"
- Trigram is backed off to let a bigram do the job!
- What if the nominator never occurred in corpus?
- Approached by various smoothing methods
- Sparsity issue becomes even more prominent in higher n-gram!

Count-based n-gram LMs - limitations

- Storage
- An n-gram language model needs to store all levels of n-grams, from uni- to n-gram, observed in the corpus
- Increasing n radically worsens the storage problem!
- No understanding of tokens relations
- Semantic and syntactic relations between words are fully ignored
- "book" and "books" or "car" and "automobile" are treated completely separately

Generating text

- A trigram LM trained on Reuters corpus (1.7 M words)
today the \qquad
get probability distribution

Generating text

- Generating text by sampling from the probability distributions

Generating text

- Generating text by sampling from the probability distributions
today the price

Generating text

- Generating text by sampling from the probability distributions
today the price of

Generating text

- Generating text by sampling from the probability distributions
> today the price of gold per ton, while production of shoe lasts and shoe industry, the bank intervened just after it considered and rejected an imf demand to rebuild depleted european stocks, sept 30 end primary 76 cts a share.
- Decently good in syntax ... but incoherent!
- Increasing n makes the text more coherent but also intensifies the discussed issues

Generating text

- n-gram LMs trained on Shakespeare's works
-To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have
-Hill he late speaks; or! a more to leg less first you enter
-Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.
gram -What means, sir. I confess she? then all sorts, he is trim, captain.
-Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.
gram -This shall forbid it should be branded, if renown made it empty.
-King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in;
gram -It cannot be but so.

Generating text

- n-gram LMs trained on Wall Street Journal

1
Months the my and issue of year foreign new exchange's september were recession exchange new endorsed a acquire to six executives

Last December through the way to preserve the Hudson corporation N. B. E. C. Taylor would seem to complete the major central planners one point five percent of U.S. E. has already old M. X. corporation of living on information such as more frequently fishing to keep her

3 gram Brazil on market conditions

Agenda

- n-gram language models
- Count-based n-gram LM
- Neural n-gram LM

n-gram language modeling with neural networks

Recall

- The aim of a n-gram Language Model is to calculate:

$$
P\left(x^{(t+1)} \mid x^{(t-n+2)}, \ldots, x^{(t)}\right)
$$

- We can use a feed forward neural network to estimate this probability
- Immediate benefits:
- Smooth probability estimation
- Exploiting the semantic space of word embeddings (probably better generalization)

Neural n-gram LM - preparing training data

- Preparing training data for a neural 4-gram Language Model in the form of (context, next word), namely $\left(x^{(t-2)} x^{(t-1)} x^{(t)}, x^{(t+1)}\right)$:
- For a given text corpus:
a fluffy cat sunbathes on the bank of river ...
- Training data items would be:
(<bos> <bos> <bos>, a)
(<bos> <bos> a, fluffy)
(<bos> a fluffy, cat)
(a fluffy cat, sunbathes)
(fluffy cat sunbathes, on)
(cat sunbathes on, the)
(sunbathes on the, bank)
<bos> is a special token added to dictionary, referring to beginning of sentence

Also, dot is commonly replaced with <eos> token - end of sentence

Neural n-gram Language Model - architecture

$P\left(x^{(t+1)} \mid\right.$ a fluffy cat $)=\hat{y}_{x^{(t+1)}}^{(t)}$
$P($ sunbathes |a fluffy cat $)=\hat{y}_{\text {sunbathes }}^{(t)}$

- $\quad \boldsymbol{E} \rightarrow N \times d$
- $\quad W \rightarrow d \times((n-1) \times d)$
- $\boldsymbol{U} \rightarrow d \times N$
\boldsymbol{E} is called encoder embedding \boldsymbol{U} is called decoder embedding or output projection
N size of vocabulary
d embeddings dimension

A data item in training data:
(a fluffy cat, sunbathes)

a
$x^{(t-2)}$
fluffy
cat

N size of vocabulary

Formulation

($n-1$) number of preceding words
Parameters are shown in red

Encoder

- From word to word embedding:
- One-hot vector of word $x^{(t)}$ is $\boldsymbol{x}^{(t)}$ vector: $\boldsymbol{x}^{(t)} \rightarrow 1 \times N$
- In $\boldsymbol{x}^{(t)}$, all values are 0 and only the value corresponding to the word $x^{(t)}$ is set to 1
- Fetching word embedding: $\boldsymbol{e}^{(t)}=\boldsymbol{x}^{(t)} \boldsymbol{E} \quad \boldsymbol{e}^{(t)} \rightarrow 1 \times d$
- In practice, $\boldsymbol{e}^{(t)}$ is achieved by fetching the vector of $x^{(t)}$ from E. No need for $\boldsymbol{x}^{(t)}$ in practice
- Concatenation of $(n-1)$ word embeddings:

$$
\boldsymbol{e}=\left[\boldsymbol{e}^{(t-2)}, \boldsymbol{e}^{(t-1)}, \boldsymbol{e}^{(t)}\right] \quad \boldsymbol{e} \rightarrow 1 \times(n-1) d
$$

- Hidden layer: $\boldsymbol{h}=\tanh \left(\boldsymbol{e} W+\boldsymbol{b}^{\boldsymbol{w}}\right) \quad \boldsymbol{h} \rightarrow 1 \times d$
$\boldsymbol{E} \rightarrow N \times d$
$W \rightarrow(n-1) d \times d$
$b^{w} \rightarrow 1 \times d$
N size of vocabulary

Formulation

($n-1$) number of preceding words
Parameters are shown in red

Decoder

- Predicted logits:

$$
\boldsymbol{z}=\boldsymbol{h} \boldsymbol{U}+\boldsymbol{b}^{u} \quad \mathbf{z} \rightarrow 1 \times N
$$

- Predicted probability distribution:

$$
\widehat{\boldsymbol{y}}^{(t)}=\operatorname{softmax}(\mathbf{z}) \quad \widehat{\boldsymbol{y}}^{(t)} \rightarrow 1 \times N
$$

- Probability of any next word v at step t :

$$
P\left(v \mid x^{(t)}, \ldots, x^{(t-n+2)}\right)=\hat{y}_{v}^{(t)}
$$

$$
\begin{gathered}
\boldsymbol{U} \rightarrow d \times N \\
\boldsymbol{b}^{u} \rightarrow 1 \times N
\end{gathered}
$$

Loss function

$P\left(x^{(t+1)} \mid\right.$ a fluffy cat $)=\hat{y}_{x^{(t+1)}}^{(t)}$
$P($ sunbathes \mid a fluffy cat $)=\hat{y}_{\text {sunbathes }}^{(t)}$

A data item in training data:
(a fluffy cat, sunbathes)

Training n-gram neural LM

- Start with a large text corpus: $x^{(1)}, \ldots, x^{(T)}$
- In every step t, give $n-1$ previous words as input and output the predicted probability distribution of the next words $\widehat{\boldsymbol{y}}^{(t)}$
- Loss function at t is Negative Log Likelihood of the predicted probability for the actual next word $x^{(t+1)}$

$$
\begin{gathered}
\mathcal{L}^{(t)}=-\log P\left(x^{(t+1)} \mid x^{(t-n+2)}, \ldots, x^{(t)}\right) \\
\mathcal{L}^{(t)}=-\log \hat{y}_{x^{(t+1)}}^{(t)}
\end{gathered}
$$

- Overall loss is the average over all time steps:
- In practice, loss is calculated over batches of text chunks

$$
\mathcal{L}=\frac{1}{T} \sum_{t=1}^{T} \mathcal{L}^{(t)}
$$

About transfer learning

- E provides a vector for each word in dictionary
- We can initialize (some) vectors of E with pretrained word embeddings like GloVe or word2vec
- In this case, for every word in E we fetch the corresponding vector from a pre-trained word embedding model
- If the word doesn't exist, as before, its vector is randomly initialized
- We can also do the same for U
- This better initialization of parameters is a form of transfer learning

Even without transfer learning, after training the LM, the \boldsymbol{E} and \boldsymbol{U} matrices provide proper word embeddings which can be used independently

Generating text
text seed: today the
after generation: today the price
price

Generating text

(before):
today the price
(after):
today the price of

Generating text

gold
(before):
today the price of
(after):
today the price of gold

Neural n-gram LMs - summary

- Neural n-gram LMs predict next word probabilities
- Neural n-gram LMs benefit from semantic relations of words, provided by the encoder and decoder embeddings
- Neural n-gram LMs provide a smooth probability distribution
- At inference time, neural n-gram LMs require a forward pass
- Count-based n-gram LMs might be more convenient at inference time in practice, since they calculate probabilities simply from the stored counts

