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Language Modeling

§ Language Modeling is the task of predicting a word (or a 
subword or character) given a context:

𝑃(𝑣|context)

§ A Language Model (LM) can answer the questions like

𝑃(𝑣|the students opened their)
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Language Modeling – formal definition

§ Given a sequence of words 𝑥("), 𝑥($), … , 𝑥(%), a language 
model calculates the probability distribution of next word 
𝑥(%&") over all words in vocabulary

𝑃(𝑥(%&")|𝑥 " , … , 𝑥(%'"), 𝑥(%))

𝑥 is any word in the vocabulary 𝕍 = {𝑣1, 𝑣2, … , 𝑣𝑁}

☞ Note: this is the definition of directed left-to-right language models.
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Why Language Modeling?

§ Language Modeling is a benchmark task that helps us 
measure our progress on understanding language 

§ LMs are a subcomponent of many NLP tasks, especially 
those involving generating text or estimating the 
probability of text: 
- Predictive typing
- Spelling/grammar correction 
- Automatic speech recognition (ASR)
- Handwriting recognition 
- Machine translation 
- Summarization 
- Dialogue /chatbots
- etc. 
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Direct usages for next word prediction

[link]

http://web.stanford.edu/class/cs224n/index.html
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Probability of a Text

§ A Language Model can also assign probability to the 
validity a piece of text
- How probable it is that a sentence appears in a language. 

𝑃 𝑥 " , … , 𝑥 ( =?

§ According to a (directed left-to-right) Language Model, the 
probability of a given text is computed by:

𝑃 𝑥 ! , … , 𝑥 " = 𝑃 𝑥 ! ×𝑃 𝑥 # 𝑥 ! ×⋯×𝑃 𝑥 " 𝑥 ! , … , 𝑥 "$!

𝑃 𝑥 ! , … , 𝑥 " =/
%&!

"

𝑃(𝑥 % |𝑥 ! , … , 𝑥 %$! )
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Usage in Automatic Speech Recognition (ASR)
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n-gram Language Model

§ Recall: a n-gram is a chunk of n consecutive words.

the students opened their ______ 
§ unigrams: “the”, “students”, “opened”, “their” 
§ bigrams: “the students”, “students opened”, “opened their”
§ trigrams: “the students opened”, “students opened their”
§ 4-grams: “the students opened their” 

§ A n-gram Language Model collects frequency statistics 
of different n-grams in a corpus, and use these to 
calculate probabilities 
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N-gram LM as a conditional probability

§ Markov assumption: decision at time 𝑡 depends         
only on the current state 

§ In n-gram Language Model: predicting 𝑥(%&") depends 
on preceding n-1 words

§ Without Markovian assumption:

𝑃(𝑥(%&")|𝑥 " , … , 𝑥(%'"), 𝑥(%))

§ n-gram Language Model:

𝑃(𝑥(%&")|𝑥 %')&$ , … , 𝑥(%'"), 𝑥(%))

n-1 words
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n-gram LM using term counts

§ Based on definition of conditional probability:

𝑃 𝑥 %&" 𝑥 %')&$ , … , 𝑥 % =
𝑃 𝑥 %')&$ , … , 𝑥 % , 𝑥 %&"

𝑃 𝑥 %')&$ , … , 𝑥 %

§ The n-gram probability is calculated by counting n-grams 
and [n–1]-grams in a large corpus of text:

𝑃 𝑥 %&" 𝑥 % , … , 𝑥 %')&$ ≈
count 𝑥 %')&$ , … , 𝑥 % , 𝑥 %&"

count 𝑥 %')&$ , … , 𝑥 %
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Example

§ Example: learning a 4-gram Language Model

as the exam clerk started the clock, the students opened their ______ 

𝑃 𝑣 students opened their =
𝑃 students opened their 𝑣
𝑃 students opened their

§ For example, suppose that in the corpus: 
- “students opened their” occurred 1000 times 
- “students opened their books” occurred 400 times 

• 𝑃(books | students opened their) = 0.4
- “students opened their exams” occurred 100 times 

• 𝑃(exams | students opened their) = 0.1

condition on this
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Example – a bigram LM

§ Trained on the data of a restaurant dialogue system

Bigram counts:

Bigram LM:
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Count-based n-gram LMs – limitations

§ Sparsity
- What if the denominator never occurred in corpus?

• Backoff: Probability is calculated for lower n-grams.
– E.g., in „students opened their 𝑣“, if „students opened their“

does not exist, language model probability is calculated for 
“opened their” 

– Trigram is backed off to let a bigram do the job! 

- What if the nominator never occurred in corpus?
• Approached by various smoothing methods
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Laplace smoothing

§ Add a small number like 𝛿 = 1 to the count of all words:

𝑃 𝑥 !"# 𝑥 !$%"& , … , 𝑥 ! =
# 𝑥 !$%"& , … , 𝑥 ! , 𝑥 !"#

# 𝑥 !$%"& , … , 𝑥 !

𝑃 𝑥 !"# 𝑥 !$%"& , … , 𝑥 ! =
# 𝑥 !$%"& , … , 𝑥 ! , 𝑥 !"#

∑'⊂) # 𝑥 !$%"& , … , 𝑥 ! , 𝑣

𝑃*+,-+./ 𝑥 !"# 𝑥 !$%"& , … , 𝑥 ! =
# 𝑥 !$%"& , … , 𝑥 ! , 𝑥 !"# + 1
∑'⊂)(# 𝑥 !$%"& , … , 𝑥 ! , 𝑣 + 1)

𝑃*+,-+./ 𝑥 !"# 𝑥 !$%"& , … , 𝑥 ! =
# 𝑥 !$%"& , … , 𝑥 ! , 𝑥 !"# + 1

∑'⊂)(# 𝑥 !$%"& , … , 𝑥 ! , 𝑣 ) + 𝑉

𝑃*+,-+./ 𝑥 !"# 𝑥 !$%"& , … , 𝑥 ! =
# 𝑥 !$%"& , … , 𝑥 ! , 𝑥 !"# + 1
# 𝑥 !$%"& , … , 𝑥 ! + 𝑉
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Laplace smoothing example

Bigram counts 
added by 1:

Original bigram 
counts:



19

Laplace smoothing example

LM without 
smoothing:

LM with 
Laplace 

smoothing:
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Count-based n-gram LMs – limitations

§ Sparsity
- What if the denominator never occurred in corpus?

• Backoff: Probability is calculated for lower n-grams.
– E.g., in „students opened their 𝑣“, if „students opened their“

does not exist, language model probability is calculated for 
“opened their” 

– Trigram is backed off to let a bigram do the job! 

- What if the nominator never occurred in corpus?
• Approached by various smoothing methods

- Sparsity issue becomes even more prominent in higher 
n-gram!

Learn more: https://web.stanford.edu/~jurafsky/slp3/3.pdf

https://web.stanford.edu/~jurafsky/slp3/3.pdf
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Count-based n-gram LMs – limitations

§ Storage
- An n-gram language model needs to store all levels of 

n-grams, from uni- to n-gram, observed in the corpus
- Increasing n radically worsens the storage problem!

§ No understanding of tokens relations
- Semantic and syntactic relations between words are 

fully ignored
• “book” and “books” or “car” and “automobile” are treated 

completely separately



22

Generating text

§ A trigram LM trained on Reuters corpus (1.7 M words)
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Generating text

§ Generating text by sampling from the probability 
distributions
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Generating text

§ Generating text by sampling from the probability 
distributions
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Generating text

§ Generating text by sampling from the probability 
distributions
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Generating text

§ Generating text by sampling from the probability 
distributions

§ Decently good in syntax … but incoherent!
§ Increasing n makes the text more coherent but also 

intensifies the discussed issues
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Generating text

§ n-gram LMs trained on Shakespeare’s works
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Generating text

§ n-gram LMs trained on Wall Street Journal
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n-gram language modeling with neural networks

Recall 

§ The aim of a n-gram Language Model is to calculate:

𝑃 𝑥 012 𝑥 03415 , … , 𝑥 0

§ We can use a feed forward neural network to estimate 
this probability

§ Immediate benefits:
- Smooth probability estimation
- Exploiting the semantic space of word embeddings (probably 

better generalization)

Basic idea from: Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language model. Journal of machine 
learning research, 3(Feb), 1137-1155.
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Neural n-gram LM – preparing training data

§ Preparing training data for a neural 4-gram Language Model in the 
form of (context , next word), namely (𝑥 %$# 𝑥 %$! 𝑥 % , 𝑥 %'! ):

§ For a given text corpus:
a fluffy cat sunbathes on the bank of river … 

§ Training data items would be:
(<bos> <bos> <bos>, a)

(<bos> <bos> a, fluffy)

(<bos> a fluffy, cat)

(a fluffy cat, sunbathes)
(fluffy cat sunbathes, on)

(cat sunbathes on, the)

(sunbathes on the, bank)

…

<bos> is a special token added 
to dictionary, referring to 
beginning of sentence

Also, dot is commonly replaced 
with <eos> token – end of 
sentence
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Neural n-gram Language Model – architecture

a            fluffy         cat

𝑃 𝑥 %'! a 0luffy cat = 6𝑦( !"#
%

𝑥(035) 𝑥(032) 𝑥(0)

𝒆(035) 𝒆(032) 𝒆(0)

𝒉

A data item in training data:
(a fluffy cat, sunbathes)

⨁

4𝒚(0)

𝑬 𝑬 𝑬𝑁×𝑑

𝑼𝑑×𝑁

𝑾3𝑑×𝑑

𝑁 size of vocabulary
𝑑 embeddings dimension

1×𝑑

1×𝑑

1×𝑁

1×𝑑 1×𝑑

𝒆1×3𝑑

§ 𝑬 → 𝑁×𝑑
§ 𝑾 →𝑑×((𝑛 − 1)×𝑑)
§ 𝑼 → 𝑑×𝑁

𝑬 is called encoder embedding
𝑼 is called decoder embedding
or output projection

𝑃 sunbathes a 5luffy cat = ;𝑦sunbathes
$
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Formulation

Encoder
§ From word to word embedding: 

- One-hot vector of word 𝑥(0) is 𝒙(0) vector: 𝒙(!)→ 1×𝑁
• In 𝒙(!), all values are 0 and only the value corresponding to the 

word 𝑥(!) is set to 1

- Fetching word embedding: 𝒆(0) = 𝒙(0)𝑬 𝒆(%)→ 1×𝑑
• In practice, 𝒆(!) is achieved by fetching the vector of 𝑥(!) from 𝑬. No 

need for 𝒙(!) in practice

§ Concatenation of (𝑛 − 1) word embeddings: 

𝒆 = [𝒆 035 , 𝒆 032 , 𝒆 0 ] 𝒆→ 1×(𝑛 − 1)𝑑

§ Hidden layer: 𝒉 = tanh 𝒆𝑾+ 𝒃< 𝒉→ 1×𝑑

𝑾 → (𝑛 − 1)𝑑×𝑑
𝑬 → 𝑁×𝑑

𝒃+→ 1×𝑑

𝑁 size of vocabulary
𝑑 embeddings dimension
(𝑛 − 1) number of preceding words
Parameters are shown in red
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Formulation

Decoder
§ Predicted logits:

𝒛 = 𝒉𝑼 + 𝒃A 𝒛→ 1×𝑁

§ Predicted probability distribution:

4𝒚(0) = softmax 𝒛 B𝒚(%)→ 1×𝑁

§ Probability of any next word 𝑣 at step 𝑡:

𝑃 𝑣 𝑥 0 , … , 𝑥(03415) = E𝑦B
(0)

𝑼 → 𝑑×𝑁
𝒃,→ 1×𝑁

𝑁 size of vocabulary
𝑑 embeddings dimension
(𝑛 − 1) number of preceding words
Parameters are shown in red
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Loss function

a            fluffy         cat
𝑥(035) 𝑥(032) 𝑥(0)

𝒆(035) 𝒆(032) 𝒆(0)

𝒉

A data item in training data:
(a fluffy cat, sunbathes)

⨁

4𝒚(0)

𝑬 𝑬 𝑬

𝑼

𝑾
𝒆

ℒ = − log 6𝑦( !"#
% = − log 6𝑦-./01234-

%𝑃 𝑥 %'! a 0luffy cat = 6𝑦( !"#
%

𝑃 sunbathes a 5luffy cat = ;𝑦sunbathes
$
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Training n-gram neural LM

§ Start with a large text corpus: 𝑥 = , … , 𝑥 >

§ In every step 𝑡, give n-1 previous words as input and output 
the predicted probability distribution of the next words (𝒚(?)

§ Loss function at 𝑡 is Negative Log Likelihood of the predicted 
probability for the actual next word 𝑥 ?@=

ℒ(0) = − log𝑃 𝑥 012 𝑥 03415 , … , 𝑥 0

ℒ(0) = − log E𝑦C *+,
0

§ Overall loss is the average over all time steps:
- In practice, loss is calculated over batches of text chunks

ℒ =
1
𝑇
M
0D2

E

ℒ(0)
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About transfer learning

§ 𝑬 provides a vector for each word in dictionary
§ We can initialize (some) vectors of 𝑬 with pre-

trained word embeddings like GloVe or 
word2vec

- In this case, for every word in 𝑬 we fetch the 
corresponding vector from a pre-trained word 
embedding model

- If the word doesn’t exist, as before, its vector is 
randomly initialized

§ We can also do the same for 𝑼
§ This better initialization of parameters is a 

form of transfer learning

☞ Even without transfer learning, after training 
the LM, the 𝑬 and 𝑼 matrices provide proper
word embeddings which can be used 
independently 𝑥(!$&) 𝑥(!$#) 𝑥(!)

𝒆(!$&) 𝒆(!$#) 𝒆(!)

𝒉

⨁

H𝒚(!)

𝑬 𝑬 𝑬

𝑼

𝑾
𝒆
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Generating text

<bos>     today          the

𝒆(035) 𝒆(032) 𝒆(0)

𝒉

⨁

4𝒚(0)

𝑬 𝑬 𝑬

𝑼

𝑾
𝒆

sampling

price

text seed:
today the

after generation:
today the price



39

Generating text

today         the price

𝒆(035) 𝒆(032) 𝒆(0)

𝒉

⨁

4𝒚(0)

𝑬 𝑬 𝑬

𝑼

𝑾
𝒆

sampling

of

(before):
today the price

(after):
today the price of
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Generating text

the          price          of

𝒆(035) 𝒆(032) 𝒆(0)

𝒉

⨁

4𝒚(0)

𝑬 𝑬 𝑬

𝑼

𝑾
𝒆

sampling

gold

(before):
today the price of

(after):
today the price of gold

…



41

Neural n-gram LMs – summary

§ Neural n-gram LMs predict next word 
probabilities

§ Neural n-gram LMs benefit from semantic 
relations of words, provided by the encoder 
and decoder embeddings

§ Neural n-gram LMs provide a smooth 
probability distribution

§ At inference time, neural n-gram LMs require 
a forward pass

- Count-based n-gram LMs might be more 
convenient at inference time in practice, since they 
calculate probabilities simply from the stored counts 𝑥(!$&) 𝑥(!$#) 𝑥(!)

𝒆(!$&) 𝒆(!$#) 𝒆(!)

𝒉

⨁

H𝒚(!)

𝑬 𝑬 𝑬

𝑼

𝑾
𝒆


