Winter semester 2022/23

344.175 VL: Natural Language Processing
n-Gram Language Models

Navid Rekab-saz

Email: navid.rekabsaz@jku.at
Office hours: https://navid-officehours.youcanbook.me

J ¥ U Institute of
® Computational
UNIVERSITY LINZ | ® Perception

mailto:navid.rekabsaz@jku.at
https://navid-officehours.youcanbook.me/

Agenda

* n-gram language models
* Count-based n-gram LM
* Neural n-gram LM

Agenda

* n-gram language models
* Count-based n-gram LM
* Neural n-gram LM

Some slides are adopted from http://web.stanford.edu/class/cs224n/ & htips://web.stanford.edu/~jurafsky/slp3/3.pdf

http://web.stanford.edu/class/cs224n/
https://web.stanford.edu/~jurafsky/slp3/3.pdf

Language Modeling

= Language Modeling is the task of predicting a word (or a
subword or character) given a context:

P (v|context)

= A Language Model (LM) can answer the questions like

books

/‘ / laptops

\\ exams

minds

the students opened their

P(v|the students opened their)

Language Modeling — formal definition

= Given a sequence of words x(, x@, .. x(®) alanguage
model calculates the probability distribution of next word
x*D over all words in vocabulary

P(x(t'l'l) |x(1)’ e x(t_l), x(t))

x is any word in the vocabulary V = {v1,v2, ..., vN}

= Note: this is the definition of directed left-to-right language models.

Why Language Modeling?

= Language Modeling is a benchmark task that helps us
measure our progress on understanding language

= LMs are a subcomponent of many NLP tasks, especially

those involving generating text or estimating the
probability of text:

- Predictive typing

- Spelling/grammar correction

- Automatic speech recognition (ASR)

- Handwriting recognition

- Machine translation

- Summarization

- Dialogue /chatbots

- etc.

link]

Direct usages for next word prediction

©

I'll meet you at the

what is the |

what is the weather

what is the meaning of life
what is the dark web

what is the xfl

what is the doomsday clock
what is the weather today
what is the keto diet

what is the american dream
what is the speed of light
what is the bill of rights

Google Search

I'm Feeling Lucky

-(-

http://web.stanford.edu/class/cs224n/index.html

Probability of a Text

= A Language Model can also assign probability to the
validity a piece of text

- How probable it is that a sentence appears in a language.
P(x(l), ...,x(T)) =?

= According to a (directed left-to-right) Language Model, the
probability of a given text is computed by:

P(xW, .., x(M) = P(xM)xP(x@|xW)x ---xP(xD]x®), .., xT~D)

T
P(x(l), ...,x(T)) = 1—[P(x®|x®, .. xt-1)
t=1

Usage in Automatic Speech Recognition (ASR)

the

PPN

N

selling— car

/of nineteer\

ninety—» seven

e .
stop for nlnety/
Input Lattice
Lattice Rescoring
Tool
the top selling car of nineteen ninety seven
the top selling car of ninety ninety seven
the top selling car for ninety ninety seven
the stop selling car for nineteen ninety seven

N-Best List

n-gram Language Model

= Recall: a n-gram is a chunk of n consecutive words.

the students opened their

11 A1

= unigrams: ‘the”, “students”, “opened”, “their’
= bigrams: “the students”, “students opened”, “opened their”

= trigrams: “the students opened”, “students opened their”
= 4-grams: “the students opened their”

= A n-gram Language Model collects frequency statistics
of different n-grams in a corpus, and use these to
calculate probabilities

10

N-gram LM as a conditional probability

= Markov assumption: decision at time t depends
only on the current state

= In n-gram Language Model: predicting x(¢*1 depends
on preceding n-1 words

= Without Markovian assumption:

P(x(t'l'l) |x(1)’ e x(t_l)’ x(t))

= n-gram Language Model:

P(x(t+1) |x(t—n+2), . x(t—l)’ x(t))

n-1 words

11

Agenda

* n-gram language models
+ Count-based n-gram LM
* Neural n-gram LM

Some slides are adopted from http://web.stanford.edu/class/cs224n/ & htips://web.stanford.edu/~jurafsky/slp3/3.pdf

http://web.stanford.edu/class/cs224n/
https://web.stanford.edu/~jurafsky/slp3/3.pdf

n-gram LM using term counts

= Based on definition of conditional probability:

P(x(t—n+2)’ . x(t)’ x(t+1))

P D™, . 20) = = o)
X e X

= The n-gram probabillity is calculated by counting n-grams
and [n—1]-grams in a large corpus of text:

count(x(t‘"“), o x® x(t+1))

count(x&—71+2) x(®))

P(x(t+1)|x(t), ...,x(t_”+2)) ~

13

Example

= Example: learning a 4-gram Language Model

as-the-exam-clerk-started- the-clock-the students opened their

\ J
l

condition on this

P (students opened their v)

P (v|students opened their) = P (students opened thei)

= For example, suppose that in the corpus:
- “students opened their’ occurred 1000 times

- “students opened their books” occurred 400 times
e P(books | students opened their) = 0.4

- “students opened their exams” occurred 100 times
» P(exams | students opened their) = 0.1

14

Example — a bigram LM

= Trained on the data of a restaurant dialogue system

Bigram counts:

Bigram LM:

i want to eat chinese food Ilunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
i want to eat chinese food Ilunch spend
i 0.002 033 0 0.0036 0 0 0 0.00079
want 0.0022 O 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 028 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0O
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0014 0 0.014 0 0.00092 0.0037 0O 0
lunch 0.0059 O 0 0 0 0.0029 0 0
spend 0.0036 O 0.0036 0 0 0 0 0

15

Count-based n-gram LMs — limitations

= Sparsity
- What if the denominator never occurred in corpus?

 Backoff: Probability is calculated for lower n-grams.

— E.g., in ,students opened their v“, if ,students opened their”
does not exist, language model probability is calculated for
“‘opened their’

— Trigram is backed off to let a bigram do the job!

- What if the nominator never occurred in corpus?
* Approached by various smoothing methods

16

Laplace smoothing

= Add a small number like § = 1 to the count of all words:

#(x(t—n+2)’ . x(t)’ x(t+1))

PV, x) = = s @)
X e X

#(x(t—n+2)’ . x(t)’ x(t+1))

Zvcv #(x(t—n+2), ., x(t), V)

P(x(t+1) |x(t_n+2), . x(t)) —

#(x(t—n+2)’ m,x(t)’x(t+1)) 11

Plaptace (¢, 0 20) = & D), x® vy 1 1)
ve)y Y

#(x(t"’”z), ...,x(t),x(”l)) +1
Yy (B2 x(®) v)) + |V

PLaplace (x(t+1) |x(t_"+2), . x(t)) —

#(x(t“"+2), ...,x(t),x(”l)) +1

(t+1) |+ (t—n+2) () —
G Dltomd), 2 0) = e

P Laplace

17

Laplace smoothing example

Original bigram
counts:

Bigram counts
added by 1:

i want to eat chinese food Ilunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 1 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 O 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
i want to eat chinese food Ilunch spend
i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 1 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

18

Laplace smoothing example

LM without
smoothing:

LM with
Laplace
smoothing:

i want to eat chinese food lunch spend
i 0.002 033 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0O
chinese 0.0063 0 0 0 0 0.52 0.0063 0O
food 0.014 0 0.014 0O 0.00092 0.0037 0O 0
lunch 0.0059 0 0 0 0 0.0029 0O 0
spend 0.0036 0O 0.0036 0 0 0 0 0

i want to eat chinese food lunch spend
1 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046
chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

19

Count-based n-gram LMs — limitations

= Sparsity
- What if the denominator never occurred in corpus?

 Backoff: Probability is calculated for lower n-grams.

— E.g., in ,students opened their v“, if ,students opened their”

does not exist, language model probability is calculated for
“‘opened their’

— Trigram is backed off to let a bigram do the job!

- What if the nominator never occurred in corpus?
* Approached by various smoothing methods

- Sparsity issue becomes even more prominent in higher
n-gram!

Learn more: https://web.stanford.edu/~jurafsky/slp3/3.pdf

20

https://web.stanford.edu/~jurafsky/slp3/3.pdf

Count-based n-gram LMs — limitations

= Storage

- An n-gram language model needs to store all levels of
n-grams, from uni- to n-gram, observed in the corpus

- Increasing n radically worsens the storage problem!

= No understanding of tokens relations

- Semantic and syntactic relations between words are
fully ignored

* “book” and “books” or “car”’ and “automobile’ are treated
completely separately

21

Generating text

= A trigram LM trained on Reuters corpus (1.7 M words)

today the
get probability
distribution
company ©.153| | __ Sparsity problem:
bank 0.153 not much granularity
price 9.977 in the probability
italian 0.039 distribution
emirate 0.039

22

Generating text

= Generating text by sampling from the probability
distributions

today the
\ J

condition on this
get probability
distribution

company 0.153
bank 0.153
"price 0.077
italian 0.039
emirate 0.039

|samp|e

Generating text

= Generating text by sampling from the probability
distributions

today the price
\ J

Y
condition on this

get probability

distribution
of 0.308 | sample
for 0.050
it 0.046
to 0.046
is 0.031

Generating text

= Generating text by sampling from the probability

distributions

today the price of

H_J

condition on this

get probability

distribution
the 0.072
18 0.043
0il 0.043
its 0.036
|gold 0.018 |lsample

25

Generating text

= Generating text by sampling from the probability
distributions

today the price of gold per ton, while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

= Decently good in syntax ... but incoherent!

= |ncreasing n makes the text more coherent but also
intensifies the discussed issues

26

Generating text

= n-gram LMs trained on Shakespeare’s works

gram

gram

gram

gram

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
—Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.
—What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
tis done.
—This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;
—It cannot be but so.

27

Generating text

= n-gram LMs trained on Wall Street Journal

gram

gram

gram

Months the my and issue of year foreign new exchange’s september

were recession exchange new endorsed a acquire to six executives

Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners one
point five percent of U. S. E. has already old M. X. corporation of living

on information such as more frequently fishing to keep her

They also point to ninety nine point six billion dollars from two hundred

four oh six three percent of the rates of interest stores as Mexico and
Brazil on market conditions

28

Agenda

* n-gram language models
* Count-based n-gram LM
* Neural n-gram LM

n-gram language modeling with neural networks

Recall

= The aim of a n-gram Language Model is to calculate:
P(x(t+1)|x(t—n+2)’ » x(t))

= \We can use a feed forward neural network to estimate
this probability
= Immediate benefits:
- Smooth probability estimation

- Exploiting the semantic space of word embeddings (probably
better generalization)

Basic idea from: Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language model. Journal of machine
learning research, 3(Feb), 1137-1155.

Neural n-gram LM - preparing training data

= Preparing training data for a neural 4-gram Language Model in the
form of (context, next word), namely (x(E=2)x =Dy (0) »(E+1)y.

= For a given text corpus:
a fluffy cat sunbathes on the bank of river ..

= Training data items would be:
(<bos> <bos> <bos>, a)

(<bos> <bos> a, fluffy)
(<bos> a fluffy, cat)

(a £fluffy cat, sunbathes)
(fluffy cat sunbathes, on)

(cat sunbathes on, the) <bos> is a special token added
! to dictionary, referring to
(sunbathes on the, bank) beginning of sentence

Also, dot is commonly replaced
with <eos> token — end of
sentence

31

Neural n-gram Language Model — architecture

P(x*D]a fluffy cat) = 37(2 1)

P(sunbathes|a fluffy cat) = Ysunbathes :
xy YO (@@ e+ @ - ©0O)
dXxXN U T
= F > NXd ()
= W —dXx((n—1)xd) :
= U — dxN ixaih | @
O
E is called encoder embedding 3
U is called decoder embedding 3dxd W1
or output projection 1x3d €
N size of vocabulary i i L
d embeddings dimension o o O
et2|o|letVig| e®|o
1xd O | 1xd O| 1xd O
0 0 0
wET ET Ef
A data item in training data: a fluffy cat
(a fluff t, sunbathes)
@ fluffy cat, su X2 4D R©

32

N size of vocabulary

. d embeddings dimension
FOI'm u Iatlon (n — 1) number of preceding words
Parameters are shown in red
Encoder

= From word to word embedding:

- One-hot vector of word x () is x() vector: x®— 1xN

« In x®, all values are 0 and only the value corresponding to the
word x® is set to 1

- Fetching word embedding: e = xOF e®_, 1xd

- In practice, e® is achieved by fetching the vector of x(©) from E. No
need for x(¥) in practice

= Concatenation of (n — 1) word embeddings:
e =[elt=2) et-1) oM o 1x(n-1)d

= Hidden layer: h = tanh(eW + b%Y) h— 1xd

E — NXd
W — (n—1)dxd

b" — 1xd
33

N size of vocabulary

. d embeddings dimension
FOI'm u Iatlon (n — 1) number of preceding words
Parameters are shown in red
Decoder

= Predicted logits:
z = hU + b* z— 1xN
= Predicted probability distribution:
) = softmax(z) P®— 1xN

= Probability of any next word v at step t:

P(v|x®, ..., xE+2)) = yﬁt)

U— dXN
b%*— 1xN

34

Loss function

(1)

P(x*D]a fluffy cat) = pt (m) ﬂmﬂm L=—10g9 1y =
P(sunbathes|a fluffy cat) = étlinbathes : 1
y(t) @@ ++ @+ 000
u]
(o]
O
h e
ad
"l
i ol L
et-2 2] et-1|2| ®|3
@) @) @)
S o] e
ET Ef Et
A data item in training data: a fluffy cat

(a fluffy cat, sunbathes)
uffy u x({=2) 5 (E-1) 5 (©

—log

~ (1)
y sunbathes

35

Training n-gram neural LM

= Start with a large text corpus: x®, ..., x(D

= In every step t, give n-1 previous words as input and output
the predicted probability distribution of the next words y®)

= Loss function at t is Negative Log Likelihood of the predicted
probability for the actual next word x (1)

LB = —log P(xEFD|xt-n+2) 5 D))

L ® = — log 5;9(52"'1)

= Qverall loss is the average over all time steps:
- In practice, loss is calculated over batches of text chunks

1 T
L=— ()
TEL
t=1

36

About transfer learning

= FE provides a vector for each word in dictionary
= We can initialize (some) vectors of E with pre-

trained word embeddings like GloVe or y®
word2vec (@@ ++ @+ 000
- In this case, for every word in E we fetch the U 1
corresponding vector from a pre-trained word

embedding model

If the word doesn’t exist, as before, its vector is h
randomly initialized

= We can also do the same for U

= This befter initialization of parameters is a
form of transfer learning

= Even without transfer learning, after training
the LM, the E and U matrices provide proper
word embeddings which can be used
independently

37

Generating text

fext seed:
today the

after generation:

today the price

price

1 sampling

2

S
(e000|—

h
w]
Ciole

| T |
et-2) (9] et-D|S| |3
O O O
O O &
E T Ef Ef

<bos> today the

38

Generating text

(before):
today the price

(after):
today the price of

1 sampling

39

Generating text

gold

|-
(before): I S

today the price of

2

U
(after): l
today the price of gold :
h e
&
w]
Siole
| T |
et-2) (9] -S| 2®|F
e ®) ®)
O O cl
EfT ET Et
the price of

Neural n-gram LMs — summary

= Neural n-gram LMs predict next word

probabilities
y(t)
= Neural n-gram LMs benefit from semantic (@@ ++» © s 000
relations of words, provided by the encoder UT

and decoder embeddings

= Neural n-gram LMs provide a smooth
probability distribution

= Atinference time, neural n-gram LMs require
a forward pass

- Count-based n-gram LMs might be more ©
convenient at inference time in practice, since they E E4
calculate probabilities simply from the stored counts x(t=2) 5 (E=1) x®

41

