
Institute of
Computational
Perception

344.175 VL: Natural Language Processing
n-Gram Language Models

Navid Rekab-saz

Email: navid.rekabsaz@jku.at
Office hours: https://navid-officehours.youcanbook.me

Winter semester 2022/23

mailto:navid.rekabsaz@jku.at
https://navid-officehours.youcanbook.me/

Agenda

• n-gram language models
• Count-based n-gram LM
• Neural n-gram LM

Agenda

• n-gram language models
• Count-based n-gram LM
• Neural n-gram LM

Some slides are adopted from http://web.stanford.edu/class/cs224n/ & https://web.stanford.edu/~jurafsky/slp3/3.pdf

http://web.stanford.edu/class/cs224n/
https://web.stanford.edu/~jurafsky/slp3/3.pdf

4

Language Modeling

§ Language Modeling is the task of predicting a word (or a
subword or character) given a context:

𝑃(𝑣|context)

§ A Language Model (LM) can answer the questions like

𝑃(𝑣|the students opened their)

5

Language Modeling – formal definition

§ Given a sequence of words 𝑥("), 𝑥($), … , 𝑥(%), a language
model calculates the probability distribution of next word
𝑥(%&") over all words in vocabulary

𝑃(𝑥(%&")|𝑥 " , … , 𝑥(%'"), 𝑥(%))

𝑥 is any word in the vocabulary 𝕍 = {𝑣1, 𝑣2, … , 𝑣𝑁}

☞ Note: this is the definition of directed left-to-right language models.

6

Why Language Modeling?

§ Language Modeling is a benchmark task that helps us
measure our progress on understanding language

§ LMs are a subcomponent of many NLP tasks, especially
those involving generating text or estimating the
probability of text:
- Predictive typing
- Spelling/grammar correction
- Automatic speech recognition (ASR)
- Handwriting recognition
- Machine translation
- Summarization
- Dialogue /chatbots
- etc.

7

Direct usages for next word prediction

[link]

http://web.stanford.edu/class/cs224n/index.html

8

Probability of a Text

§ A Language Model can also assign probability to the
validity a piece of text
- How probable it is that a sentence appears in a language.

𝑃 𝑥 " , … , 𝑥 (=?

§ According to a (directed left-to-right) Language Model, the
probability of a given text is computed by:

𝑃 𝑥 ! , … , 𝑥 " = 𝑃 𝑥 ! ×𝑃 𝑥 # 𝑥 ! ×⋯×𝑃 𝑥 " 𝑥 ! , … , 𝑥 "$!

𝑃 𝑥 ! , … , 𝑥 " =/
%&!

"

𝑃(𝑥 % |𝑥 ! , … , 𝑥 %$!)

9

Usage in Automatic Speech Recognition (ASR)

10

n-gram Language Model

§ Recall: a n-gram is a chunk of n consecutive words.

the students opened their ______
§ unigrams: “the”, “students”, “opened”, “their”
§ bigrams: “the students”, “students opened”, “opened their”
§ trigrams: “the students opened”, “students opened their”
§ 4-grams: “the students opened their”

§ A n-gram Language Model collects frequency statistics
of different n-grams in a corpus, and use these to
calculate probabilities

11

N-gram LM as a conditional probability

§ Markov assumption: decision at time 𝑡 depends
only on the current state

§ In n-gram Language Model: predicting 𝑥(%&") depends
on preceding n-1 words

§ Without Markovian assumption:

𝑃(𝑥(%&")|𝑥 " , … , 𝑥(%'"), 𝑥(%))

§ n-gram Language Model:

𝑃(𝑥(%&")|𝑥 %')&$, … , 𝑥(%'"), 𝑥(%))

n-1 words

Agenda

• n-gram language models
• Count-based n-gram LM
• Neural n-gram LM

Some slides are adopted from http://web.stanford.edu/class/cs224n/ & https://web.stanford.edu/~jurafsky/slp3/3.pdf

http://web.stanford.edu/class/cs224n/
https://web.stanford.edu/~jurafsky/slp3/3.pdf

13

n-gram LM using term counts

§ Based on definition of conditional probability:

𝑃 𝑥 %&" 𝑥 %')&$, … , 𝑥 % =
𝑃 𝑥 %')&$, … , 𝑥 % , 𝑥 %&"

𝑃 𝑥 %')&$, … , 𝑥 %

§ The n-gram probability is calculated by counting n-grams
and [n–1]-grams in a large corpus of text:

𝑃 𝑥 %&" 𝑥 % , … , 𝑥 %')&$ ≈
count 𝑥 %')&$, … , 𝑥 % , 𝑥 %&"

count 𝑥 %')&$, … , 𝑥 %

14

Example

§ Example: learning a 4-gram Language Model

as the exam clerk started the clock, the students opened their ______

𝑃 𝑣 students opened their =
𝑃 students opened their 𝑣
𝑃 students opened their

§ For example, suppose that in the corpus:
- “students opened their” occurred 1000 times
- “students opened their books” occurred 400 times

• 𝑃(books | students opened their) = 0.4
- “students opened their exams” occurred 100 times

• 𝑃(exams | students opened their) = 0.1

condition on this

15

Example – a bigram LM

§ Trained on the data of a restaurant dialogue system

Bigram counts:

Bigram LM:

16

Count-based n-gram LMs – limitations

§ Sparsity
- What if the denominator never occurred in corpus?

• Backoff: Probability is calculated for lower n-grams.
– E.g., in „students opened their 𝑣“, if „students opened their“

does not exist, language model probability is calculated for
“opened their”

– Trigram is backed off to let a bigram do the job!

- What if the nominator never occurred in corpus?
• Approached by various smoothing methods

17

Laplace smoothing

§ Add a small number like 𝛿 = 1 to the count of all words:

𝑃 𝑥 !"# 𝑥 !$%"& , … , 𝑥 ! =
𝑥 !$%"& , … , 𝑥 ! , 𝑥 !"#

𝑥 !$%"& , … , 𝑥 !

𝑃 𝑥 !"# 𝑥 !$%"& , … , 𝑥 ! =
𝑥 !$%"& , … , 𝑥 ! , 𝑥 !"#

∑'⊂) # 𝑥 !$%"& , … , 𝑥 ! , 𝑣

𝑃*+,-+./ 𝑥 !"# 𝑥 !$%"& , … , 𝑥 ! =
𝑥 !$%"& , … , 𝑥 ! , 𝑥 !"# + 1
∑'⊂)(# 𝑥 !$%"& , … , 𝑥 ! , 𝑣 + 1)

𝑃*+,-+./ 𝑥 !"# 𝑥 !$%"& , … , 𝑥 ! =
𝑥 !$%"& , … , 𝑥 ! , 𝑥 !"# + 1

∑'⊂)(# 𝑥 !$%"& , … , 𝑥 ! , 𝑣) + 𝑉

𝑃*+,-+./ 𝑥 !"# 𝑥 !$%"& , … , 𝑥 ! =
𝑥 !$%"& , … , 𝑥 ! , 𝑥 !"# + 1
𝑥 !$%"& , … , 𝑥 ! + 𝑉

18

Laplace smoothing example

Bigram counts
added by 1:

Original bigram
counts:

19

Laplace smoothing example

LM without
smoothing:

LM with
Laplace

smoothing:

20

Count-based n-gram LMs – limitations

§ Sparsity
- What if the denominator never occurred in corpus?

• Backoff: Probability is calculated for lower n-grams.
– E.g., in „students opened their 𝑣“, if „students opened their“

does not exist, language model probability is calculated for
“opened their”

– Trigram is backed off to let a bigram do the job!

- What if the nominator never occurred in corpus?
• Approached by various smoothing methods

- Sparsity issue becomes even more prominent in higher
n-gram!

Learn more: https://web.stanford.edu/~jurafsky/slp3/3.pdf

https://web.stanford.edu/~jurafsky/slp3/3.pdf

21

Count-based n-gram LMs – limitations

§ Storage
- An n-gram language model needs to store all levels of

n-grams, from uni- to n-gram, observed in the corpus
- Increasing n radically worsens the storage problem!

§ No understanding of tokens relations
- Semantic and syntactic relations between words are

fully ignored
• “book” and “books” or “car” and “automobile” are treated

completely separately

22

Generating text

§ A trigram LM trained on Reuters corpus (1.7 M words)

23

Generating text

§ Generating text by sampling from the probability
distributions

24

Generating text

§ Generating text by sampling from the probability
distributions

25

Generating text

§ Generating text by sampling from the probability
distributions

26

Generating text

§ Generating text by sampling from the probability
distributions

§ Decently good in syntax … but incoherent!
§ Increasing n makes the text more coherent but also

intensifies the discussed issues

27

Generating text

§ n-gram LMs trained on Shakespeare’s works

28

Generating text

§ n-gram LMs trained on Wall Street Journal

Agenda

• n-gram language models
• Count-based n-gram LM
• Neural n-gram LM

30

n-gram language modeling with neural networks

Recall

§ The aim of a n-gram Language Model is to calculate:

𝑃 𝑥 012 𝑥 03415 , … , 𝑥 0

§ We can use a feed forward neural network to estimate
this probability

§ Immediate benefits:
- Smooth probability estimation
- Exploiting the semantic space of word embeddings (probably

better generalization)

Basic idea from: Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language model. Journal of machine
learning research, 3(Feb), 1137-1155.

31

Neural n-gram LM – preparing training data

§ Preparing training data for a neural 4-gram Language Model in the
form of (context , next word), namely (𝑥 %$# 𝑥 %$! 𝑥 % , 𝑥 %'!):

§ For a given text corpus:
a fluffy cat sunbathes on the bank of river …

§ Training data items would be:
(<bos> <bos> <bos>, a)

(<bos> <bos> a, fluffy)

(<bos> a fluffy, cat)

(a fluffy cat, sunbathes)
(fluffy cat sunbathes, on)

(cat sunbathes on, the)

(sunbathes on the, bank)

…

<bos> is a special token added
to dictionary, referring to
beginning of sentence

Also, dot is commonly replaced
with <eos> token – end of
sentence

32

Neural n-gram Language Model – architecture

a fluffy cat

𝑃 𝑥 %'! a 0luffy cat = 6𝑦(!"#
%

𝑥(035) 𝑥(032) 𝑥(0)

𝒆(035) 𝒆(032) 𝒆(0)

𝒉

A data item in training data:
(a fluffy cat, sunbathes)

⨁

4𝒚(0)

𝑬 𝑬 𝑬𝑁×𝑑

𝑼𝑑×𝑁

𝑾3𝑑×𝑑

𝑁 size of vocabulary
𝑑 embeddings dimension

1×𝑑

1×𝑑

1×𝑁

1×𝑑 1×𝑑

𝒆1×3𝑑

§ 𝑬 → 𝑁×𝑑
§ 𝑾 →𝑑×((𝑛 − 1)×𝑑)
§ 𝑼 → 𝑑×𝑁

𝑬 is called encoder embedding
𝑼 is called decoder embedding
or output projection

𝑃 sunbathes a 5luffy cat = ;𝑦sunbathes
$

33

Formulation

Encoder
§ From word to word embedding:

- One-hot vector of word 𝑥(0) is 𝒙(0) vector: 𝒙(!)→ 1×𝑁
• In 𝒙(!), all values are 0 and only the value corresponding to the

word 𝑥(!) is set to 1

- Fetching word embedding: 𝒆(0) = 𝒙(0)𝑬 𝒆(%)→ 1×𝑑
• In practice, 𝒆(!) is achieved by fetching the vector of 𝑥(!) from 𝑬. No

need for 𝒙(!) in practice

§ Concatenation of (𝑛 − 1) word embeddings:

𝒆 = [𝒆 035 , 𝒆 032 , 𝒆 0] 𝒆→ 1×(𝑛 − 1)𝑑

§ Hidden layer: 𝒉 = tanh 𝒆𝑾+ 𝒃< 𝒉→ 1×𝑑

𝑾 → (𝑛 − 1)𝑑×𝑑
𝑬 → 𝑁×𝑑

𝒃+→ 1×𝑑

𝑁 size of vocabulary
𝑑 embeddings dimension
(𝑛 − 1) number of preceding words
Parameters are shown in red

34

Formulation

Decoder
§ Predicted logits:

𝒛 = 𝒉𝑼 + 𝒃A 𝒛→ 1×𝑁

§ Predicted probability distribution:

4𝒚(0) = softmax 𝒛 B𝒚(%)→ 1×𝑁

§ Probability of any next word 𝑣 at step 𝑡:

𝑃 𝑣 𝑥 0 , … , 𝑥(03415) = E𝑦B
(0)

𝑼 → 𝑑×𝑁
𝒃,→ 1×𝑁

𝑁 size of vocabulary
𝑑 embeddings dimension
(𝑛 − 1) number of preceding words
Parameters are shown in red

35

Loss function

a fluffy cat
𝑥(035) 𝑥(032) 𝑥(0)

𝒆(035) 𝒆(032) 𝒆(0)

𝒉

A data item in training data:
(a fluffy cat, sunbathes)

⨁

4𝒚(0)

𝑬 𝑬 𝑬

𝑼

𝑾
𝒆

ℒ = − log 6𝑦(!"#
% = − log 6𝑦-./01234-

%𝑃 𝑥 %'! a 0luffy cat = 6𝑦(!"#
%

𝑃 sunbathes a 5luffy cat = ;𝑦sunbathes
$

36

Training n-gram neural LM

§ Start with a large text corpus: 𝑥 = , … , 𝑥 >

§ In every step 𝑡, give n-1 previous words as input and output
the predicted probability distribution of the next words (𝒚(?)

§ Loss function at 𝑡 is Negative Log Likelihood of the predicted
probability for the actual next word 𝑥 ?@=

ℒ(0) = − log𝑃 𝑥 012 𝑥 03415 , … , 𝑥 0

ℒ(0) = − log E𝑦C *+,
0

§ Overall loss is the average over all time steps:
- In practice, loss is calculated over batches of text chunks

ℒ =
1
𝑇
M
0D2

E

ℒ(0)

37

About transfer learning

§ 𝑬 provides a vector for each word in dictionary
§ We can initialize (some) vectors of 𝑬 with pre-

trained word embeddings like GloVe or
word2vec

- In this case, for every word in 𝑬 we fetch the
corresponding vector from a pre-trained word
embedding model

- If the word doesn’t exist, as before, its vector is
randomly initialized

§ We can also do the same for 𝑼
§ This better initialization of parameters is a

form of transfer learning

☞ Even without transfer learning, after training
the LM, the 𝑬 and 𝑼 matrices provide proper
word embeddings which can be used
independently 𝑥(!$&) 𝑥(!$#) 𝑥(!)

𝒆(!$&) 𝒆(!$#) 𝒆(!)

𝒉

⨁

H𝒚(!)

𝑬 𝑬 𝑬

𝑼

𝑾
𝒆

38

Generating text

<bos> today the

𝒆(035) 𝒆(032) 𝒆(0)

𝒉

⨁

4𝒚(0)

𝑬 𝑬 𝑬

𝑼

𝑾
𝒆

sampling

price

text seed:
today the

after generation:
today the price

39

Generating text

today the price

𝒆(035) 𝒆(032) 𝒆(0)

𝒉

⨁

4𝒚(0)

𝑬 𝑬 𝑬

𝑼

𝑾
𝒆

sampling

of

(before):
today the price

(after):
today the price of

40

Generating text

the price of

𝒆(035) 𝒆(032) 𝒆(0)

𝒉

⨁

4𝒚(0)

𝑬 𝑬 𝑬

𝑼

𝑾
𝒆

sampling

gold

(before):
today the price of

(after):
today the price of gold

…

41

Neural n-gram LMs – summary

§ Neural n-gram LMs predict next word
probabilities

§ Neural n-gram LMs benefit from semantic
relations of words, provided by the encoder
and decoder embeddings

§ Neural n-gram LMs provide a smooth
probability distribution

§ At inference time, neural n-gram LMs require
a forward pass

- Count-based n-gram LMs might be more
convenient at inference time in practice, since they
calculate probabilities simply from the stored counts 𝑥(!$&) 𝑥(!$#) 𝑥(!)

𝒆(!$&) 𝒆(!$#) 𝒆(!)

𝒉

⨁

H𝒚(!)

𝑬 𝑬 𝑬

𝑼

𝑾
𝒆

