344.175 VL: Natural Language Processing Neural Networks for NLP - a Walkthrough

Navid Rekab-saz

Email: navid.rekabsaz@jku.at
Office hours: https://navid-officehours.youcanbook.me

Notation - recap

- $a \rightarrow$ scalar
- b vector
- $i^{\text {th }}$ element of \boldsymbol{b} is the scalar b_{i}
- $\boldsymbol{C} \rightarrow$ matrix
- $i^{\text {th }}$ vector of \boldsymbol{C} is \boldsymbol{c}_{i}
- $j^{\text {th }}$ element of the $i^{\text {th }}$ vector of \boldsymbol{C} is the scalar $c_{i, j}$
- Tensor: generalization of scalar, vector, matrix to any arbitrary dimension

Probability

- Conditional probability, given two random variables X and Y :

$$
P(Y \mid X)
$$

- Probability distribution
- For a discrete random variable Y with K states (classes)
- $0 \leq P\left(Y_{i}\right) \leq 1$
- $\sum_{i=1}^{K} P\left(Y_{i}\right)=1$
- E.g. with $K=4$ states: $\left[\begin{array}{llll}0.2 & 0.3 & 0.45 & 0.05\end{array}\right]$
- Expected value over a set \mathcal{D}

$$
\mathbb{E}_{\mathcal{D}}[f]=\frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} f(x)
$$

Note: The definition of expected value is not completely precise. Though, it suffices for our use in this lecture

Neural Computation

An Artificial Neuron

Learning with Neural Networks

- Design the network's architecture
- Loop until some exit criteria are met
- Sample a (mini)batch from training data \mathcal{D}
- Execute forward pass: predict the output tensor of each given input tensor
- Calculate loss
- Optimize the network to reduce loss
- Calculate the gradient of each parameter regarding the loss function using the backpropagation algorithm
- Update parameters using their gradients

Learning with Neural Networks

- Design the network's architecture
- Loop until some exit criteria are met
- Sample a (mini)batch from training data \mathcal{D}
- Execute forward pass: predict the output tensor of each given input tensor
- Calculate loss
- Optimize the network to reduce loss
- Calculate the gradient of each parameter regarding the loss function using the backpropagation algorithm
- Update parameters using their gradients

Artificial Neural Networks

- Neural Networks are non-linear functions and universal approximators
- Neural networks can readily be defined as probabilistic models which estimate $P(Y \mid X)$
- Considering model parameter, $P(Y \mid X)$ can be written as $P(Y \mid \boldsymbol{x} ; \mathbb{W})$
- \boldsymbol{x} is an input vector and \mathbb{W} is the set of model parameters
- The model's predicted probability distribution is:

$$
\widehat{\boldsymbol{y}}=P(Y \mid \boldsymbol{x} ; \mathbb{W})
$$

A sample neural network (Multi Layer Perceptron)

Hidden nodes/layers apply non-linear functions to their inputs

Linear

$$
f(x)=x
$$

Non-linearities - Sigmoid

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

- squashes input between 0 and 1
- Output becomes like a probability value

Hyperbolic Tangent (Tanh)

$$
\tanh (x)=\frac{e^{2 x}-1}{e^{2 x}+1}
$$

- squashes input between -1 and 1

Rectified Linear Unit (ReLU)

$\operatorname{ReLU}(x)=\max (0, x)$

- fits to deep architectures, as it prevents vanishing gradient

Examples

$$
\boldsymbol{x}=\left[\begin{array}{ll}
1 & 3
\end{array}\right] \quad \boldsymbol{W}=\left[\begin{array}{ccccc}
0.5 & -0.5 & 2 & 0 & 0 \\
0 & 0 & 0 & 4 & -1
\end{array}\right]
$$

- Linear transformation $x W$:

$$
\boldsymbol{x} \boldsymbol{W}=\left[\begin{array}{ll}
1 & 3
\end{array}\right]\left[\begin{array}{ccccc}
0.5 & -0.5 & 2 & 0 & -1 \\
0 & 0 & 0 & 4 & -1
\end{array}\right]=\left[\begin{array}{lllll}
0.5 & -0.5 & 2 & \mathbf{1 2} & -4
\end{array}\right]
$$

- Non-linear transformation $\operatorname{ReLU}(\boldsymbol{x} \boldsymbol{W})$:

$$
\operatorname{ReLU}\left(\left[\begin{array}{lllll}
0.5 & -0.5 & 2 & 12 & -4
\end{array}\right]\right)=\left[\begin{array}{llllll}
\mathbf{0 . 5} & \mathbf{0 . 0} & \mathbf{2} & \mathbf{1 2} & \mathbf{0 . 0}
\end{array}\right]
$$

- Non-linear transformation $\sigma(x W)$:

$$
\sigma\left(\left[\begin{array}{lllll}
0.5 & -0.5 & 2 & 12 & -4
\end{array}\right]\right)=\left[\begin{array}{llllll}
\mathbf{0 . 6 2} & \mathbf{0 . 3 7} & \mathbf{0 . 8 8} & \mathbf{0 . 9 9} & \mathbf{0 . 1 1}
\end{array}\right]
$$

- Non-linear transformation $\tanh (\boldsymbol{x} W)$:

$$
\tanh \left(\left[\begin{array}{lllll}
0.5 & -0.5 & 2 & 12 & -4
\end{array}\right]\right)=\left[\begin{array}{llllll}
\mathbf{0} .46 & -\mathbf{0 . 4 6} & \mathbf{0 . 9 6} & \mathbf{0 . 9 9} & -\mathbf{0 . 9 9}
\end{array}\right]
$$

Learning with Neural Networks

- Design the network's architecture
- Loop until some exit criteria are met
- Sample a (mini)batch from training data \mathcal{D}
- Execute forward pass: predict the output tensor of each given input tensor
- Calculate loss
- Optimize the network to reduce loss
- Calculate the gradient of each parameter regarding the loss function using the backpropagation algorithm
- Update parameters using their gradients

Early Stopping

- Run the model for several steps (epochs), and in each step evaluate the model on the validation set
- Store the model if the evaluation results improve
- At the end, take the stored model with the best validation results as the final model

Learning with Neural Networks

- Design the network's architecture
- Loop until some exit criteria are met
- Sample a (mini)batch from training data \mathcal{D}
- Execute forward pass: predict the output tensor of each given input tensor
- Calculate loss
- Optimize the network to reduce loss
- Calculate the gradient of each parameter regarding the loss function using the backpropagation algorithm
- Update parameters using their gradients

Toy neural network

- A sample neural network is going to calculate the following function:

$$
z(x ; \mathbb{W})=w_{2}^{2} *\left(2 * x * w_{1}+w_{0}\right)
$$

- x is input and \mathbb{W} is the tensor of parameters
- Parameters are initialized with

$$
w_{0}=1 \quad w_{1}=3 \quad w_{2}=2
$$

- A neural network first redefines this function as subfunctions of basic/atomic operations with new intermediary variables:*

$$
\begin{gathered}
a=2 * x * w_{1} \\
b=a+w_{0} \\
c=w_{2}^{2} \\
z=c * b
\end{gathered}
$$

Computational Graph

$$
z=c * b
$$

Forward pass

Output probability distribution

Softmax

- As discussed, neural networks can readily turn to probabilistic models
- To do it, we need to transform the output vector z of a neural network with K output classes to a probability distribution
- In the context of neural networks, \mathbf{z} is usually called logits
- softmax turns a vector to a probability distribution
- z could be the output vector of a neural network

$$
\operatorname{softmax}(\mathbf{z})_{l}=\frac{e^{z_{l}}}{\sum_{i=1}^{K} e^{z_{i}}}
$$

Output probability distribution

Softmax - example

$$
K=4 \text { classes }
$$

$$
\operatorname{softmax}(\mathbf{z})_{l}=\frac{e^{z_{l}}}{\sum_{i=1}^{K} e^{z_{i}}}
$$

$$
z=\left[\begin{array}{l}
1 \\
2 \\
5 \\
6
\end{array}\right]
$$

$$
\operatorname{softmax}(\mathbf{z})=\left[\begin{array}{l}
0.004 \\
0.013 \\
0.264 \\
0.717
\end{array}\right]
$$

Softmax characteristics

- The exponential function in softmax makes the maximum becomes much higher than the others
- Softmax identifies the "max" but in a "soff" way!
- Softmax imposes competition between the predicted output values, as in fact "winner takes (almost) all!"
- Winner-takes-all is the case when one value is 1 and the rest are 0
- Softmax provides a soft distribution of winner-takes-all
- This resembles the competition between nearby neurons in the cortex

Learning with Neural Networks

- Design the network's architecture
- Loop until some exit criteria are met
- Sample a (mini)batch from training data \mathcal{D}
- Execute forward pass: predict the output tensor of each given input tensor
- Calculate loss
- Optimize the network to reduce loss
- Calculate the gradient of each parameter regarding the loss function using the backpropagation algorithm
- Update parameters using their gradients

Sample neural network

Cross Entropy Loss

- Given a classification task with K classes
- known as multi-class classification
- $\widehat{\boldsymbol{y}} \rightarrow$ predicted probability distribution of the classes
- $\boldsymbol{y} \rightarrow$ actual probability distribution of the classes (labels)
- Cross Entropy loss is defined as:

$$
\mathcal{L}=-\mathbb{E}_{\mathcal{D}} \sum_{i=1}^{K} y_{i} \log \hat{y}_{i}
$$

- $\mathcal{D} \rightarrow$ the set of training data
- In neural networks, we can write it as:

$$
\mathcal{L}(\mathbb{W})=-\mathbb{E}_{\mathcal{D}} \sum_{i=1}^{K} y_{i} \log P\left(Y_{i} \mid \boldsymbol{x} ; \mathbb{W}\right)
$$

Cross Entropy Loss - example 1

- A multi-label scenario:

$$
\begin{gathered}
\widehat{\boldsymbol{y}}=\left[\begin{array}{l}
0.004 \\
0.013 \\
0.264 \\
0.717
\end{array}\right] \quad \boldsymbol{y}=\left[\begin{array}{c}
0 \\
0.25 \\
0 \\
0.75
\end{array}\right] \\
\mathcal{L}=-\sum_{i=1}^{K} y_{i} \log \hat{y}_{i}
\end{gathered}
$$

$\mathcal{L}=-(0 \times \log 0.004+0.25 \times \log 0.013+0 \times \log 0.264+0.75 \times \log 0.717)$

$$
\begin{gathered}
\mathcal{L}=-(0-0.471+0-0.108) \\
\mathcal{L}=0.579
\end{gathered}
$$

Cross Entropy Loss - example 2

- A single-label scenario:

$$
\begin{gathered}
\widehat{\boldsymbol{y}}=\left[\begin{array}{l}
0.004 \\
0.013 \\
0.264 \\
0.717
\end{array}\right] \quad \boldsymbol{y}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \\
\mathcal{L}=-\sum_{i=1}^{K} y_{i} \log \hat{y}_{i}
\end{gathered}
$$

$\mathcal{L}=-(0 \times \log 0.004+0 \times \log 0.013+0 \times \log 0.264+1 \times \log 0.717)$

$$
\begin{gathered}
\mathcal{L}=-(0+0+0-0.144) \\
\mathcal{L}=0.144
\end{gathered}
$$

Negative Log Likelihood (NLL) Loss

- Single-label classification is the most common scenario
- In this case, we can simplify Cross Entropy formulation to

$$
\mathcal{L}(\mathbb{W})=-\mathbb{E}_{\mathcal{D}} \sum_{i=1}^{K} y_{i} \log P\left(Y_{i} \mid \boldsymbol{x} ; \mathbb{W}\right)=-\mathbb{E}_{\mathcal{D}} \log P\left(Y_{l} \mid \boldsymbol{x} ; \mathbb{W}\right)
$$

- where l is the index of the correct class
- This loss function is known as Negative Log Likelihood (NLL)
- NLL is a special case of Cross Entropy

NLL + softmax

- What happens when we use NLL and softmax in the output layer of a neural network?

$$
\mathcal{L}(\mathbb{W})=-\mathbb{E}_{\mathcal{D}} \log P\left(Y_{l} \mid \boldsymbol{x} ; \mathbb{W}\right)=-\mathbb{E}_{\mathcal{D}} \log \operatorname{softmax}(\mathbf{z})_{l}
$$

$z \rightarrow$ output vector before softmax (logits)

$$
\begin{gathered}
\mathcal{L}(\mathbb{W})=-\mathbb{E}_{\mathcal{D}} \log \frac{e^{z_{l}}}{\sum_{i=1}^{K} e^{z_{i}}}=-\mathbb{E}_{\mathcal{D}}\left[\log e^{z_{l}}-\log \sum_{i=1}^{K} e^{z_{i}}\right] \\
\mathcal{L}(\mathbb{W})=-\mathbb{E}_{\mathcal{D}}\left[\begin{array}{c}
\left.z_{l}-\log \sum_{i=1}^{K} e^{z_{i}}\right] \\
\begin{array}{c}
\text { This term is (almost) } \\
\text { equal to } \max (\mathbf{z})
\end{array}
\end{array}\right.
\end{gathered}
$$

NLL + softmax - example 1

$$
\begin{aligned}
& \mathcal{L}=-\left[z_{l}-\log \sum_{i=1}^{K} e^{z_{i}}\right] \\
& \mathbf{z}=\left[\begin{array}{llll}
1 & 2 & 0.5 & 6
\end{array}\right]
\end{aligned}
$$

- If the correct class is the first one, $l=1$:

$$
\mathcal{L}=-\left[1-\log \left(e^{1}+e^{2}+e^{0.5}+e^{6}\right)\right]=-1+6.02=5.02
$$

- If the correct class is the third one, $l=3$:

$$
\mathcal{L}=-\left[0.5-\log \left(e^{1}+e^{2}+e^{0.5}+e^{6}\right)\right]=-0.5+6.02=5.52
$$

- If the correct class is the fourth one, $l=4$:

$$
\mathcal{L}=-\left[6-\log \left(e^{1}+e^{2}+e^{0.5}+e^{6}\right)\right]=-6+6.02=\mathbf{0 . 0 2}
$$

NLL + softmax - example 2

$$
\begin{aligned}
\mathcal{L} & =-\left[z_{l}-\log \sum_{i=1}^{K} e^{z_{i}}\right] \\
\boldsymbol{Z} & =\left[\begin{array}{llll}
1 & 2 & 5 & 6
\end{array}\right]
\end{aligned}
$$

- If the correct class is the first one, $l=1$:

$$
\mathcal{L}=-\left[1-\log \left(e^{1}+e^{2}+e^{5}+e^{6}\right)\right]=-1+6.33=5.33
$$

- If the correct class is the third one, $l=3$:
$\mathcal{L}=-\left[5-\log \left(e^{1}+e^{2}+e^{5}+e^{6}\right)\right]=-5+6.33=1.33$
- If the correct class is the fourth one, $l=4$:
$\mathcal{L}=-\left[6-\log \left(e^{1}+e^{2}+e^{5}+e^{6}\right)\right]=-6+6.33=\mathbf{0 . 3 3}$

Learning with Neural Networks

- Design the network's architecture
- Loop until some exit criteria are met
- Sample a (mini)batch from training data \mathcal{D}
- Execute forward pass: predict the output tensor of each given input tensor
- Calculate loss function of the (mini)batch
- Optimize the network to reduce loss
- Calculate the gradient of each parameter regarding the loss function using the backpropagation algorithm
- Update parameters using their gradients

Toy neural network

$$
z(x ; \mathbb{W})=w_{2}^{2} *\left(2 * x * w_{1}+w_{0}\right)
$$

- Initialization: $w_{0}=1 \quad w_{1}=3 \quad w_{2}=2$
- Intermediary variables:

$$
\begin{gathered}
a=2 * x * w_{1} \\
b=a+w_{0} \\
c=w_{2}^{2} \\
z=c * b
\end{gathered}
$$

- An "imaginary" loss:

$$
\mathcal{L}=y-z
$$

For the current datapoint x we have $y=38$

Optimization

Gradient-based optimization

- Assumption 1: optimize \mathcal{L} in respect to each parameter $w \in \mathbb{W}$ independently regardless of other parameters

Function \mathcal{L} when all parameters remain unchanged

Gradient Descent optimization

- Assumption 2: decide about your course of change for $w \in \mathbb{W}$ according to the local changes in \mathcal{L}

Gradient Descent optimization

- We hence need the derivatives of \mathcal{L} in respect to each $w \in \mathbb{W}$:

$$
\nabla_{\mathbb{W}} \mathcal{L}=\left[\begin{array}{lll}
\frac{\partial \mathcal{L}}{\partial w_{0}} & \frac{\partial \mathcal{L}}{\partial w_{1}} & \frac{\partial \mathcal{L}}{\partial w_{2}} \ldots
\end{array}\right]
$$

- $\quad \nabla_{\mathbb{W}} \mathcal{L}$ is often called gradient tensor, whose elements are the partial derivatives of \mathcal{L} in respect to each parameter:

Gradient Descent algorithm

- A model with parameters \mathbb{W} at time step $t \rightarrow \mathbb{W}^{(t)}$, learning rate η, and set of datapoints \mathcal{D}
- Loop for some epochs
- Compute gradient tensor \mathbb{G} of parameters \mathbb{W} averaged over datapoints \mathcal{D} :

$$
\mathbb{G} \leftarrow \frac{1}{|\mathcal{D}|} \nabla_{\mathbb{W}} \sum_{(\boldsymbol{x}, y) \in \mathcal{D}} \mathcal{L}(\boldsymbol{x}, y ; \mathbb{W})
$$

- Update the parameters by taking steps in the opposite direction of the gradient tensor multiplied by η :

$$
\mathbb{W}^{(t+1)} \leftarrow \mathbb{W}^{(t)}-\eta \mathbb{G}
$$

- Reduce learning rate (annealing) if some criteria are met or according to a scheduler

Learning with Neural Networks

- Design the network's architecture
- Loop until some exit criteria are met
- Sample a (mini)batch from training data \mathcal{D}
- Execute forward pass: predict the output tensor of each given input tensor
- Calculate loss
- Optimize the network to reduce loss
- Calculate the gradient of each parameter regarding the loss function using the backpropagation algorithm
- Update parameters using their gradients

Chain rule

- Gradient tensor: $\nabla_{\mathbb{W}} \mathcal{L}=\left[\begin{array}{ll}\left.\frac{\partial \mathcal{L}}{\partial w_{0}}=? \quad \frac{\partial \mathcal{L}}{\partial w_{1}}=? \quad \frac{\partial \mathcal{L}}{\partial w_{2}}=?\right]\end{array}\right]$
- Partial derivatives can be calculated using local derivates and the chain rule:

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial w_{0}} & =\frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial b} \frac{\partial b}{\partial w_{0}} \\
\frac{\partial \mathcal{L}}{\partial w_{1}} & =\frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial b} \frac{\partial b}{\partial a} \frac{\partial a}{\partial w_{1}} \\
\frac{\partial \mathcal{L}}{\partial w_{2}} & =\frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial c} \frac{\partial c}{\partial w_{2}}
\end{aligned}
$$

- Local derivates are pre-defined on each atomic operation in the neural computation graph

Backward pass

- Tracing the computation graph from top to bottom and calculating the values of local derivatives
- It means that:
- We need to keep the values of all intermediate variables after forward pass
- For the local derivative of every atomic operation, we now have a new stored value

Backpropagation

Calculating partial derivatives:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial w_{0}}=\frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial b} \frac{\partial b}{\partial w_{0}}=-1 \times 4 \times 1=-4 \\
& \frac{\partial \mathcal{L}}{\partial w_{1}}=\frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial b} \frac{\partial b}{\partial a} \frac{\partial a}{\partial w_{1}}=-1 \times 4 \times 1 \times 2=-8 \\
& \frac{\partial \mathcal{L}}{\partial w_{2}}=\frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial c} \frac{\partial c}{\partial w_{2}}=-1 \times 7 \times 4=-28
\end{aligned}
$$

Learning with Neural Networks

- Design the network's architecture
- Loop until some exit criteria are met
- Sample a (mini)batch from training data \mathcal{D}
- Execute forward pass: predict the output tensor of each given input tensor
- Calculate loss function of the (mini)batch
- Optimize the network to reduce loss
- Calculate the gradient of each parameter regarding the loss function using the backpropagation algorithm
- Update parameters using their gradients

Gradient Descent algorithm - recap

- A model with parameters \mathbb{W} at time step $t \rightarrow \mathbb{W}^{(t)}$, learning rate η, and set of datapoints \mathcal{D}
- Loop for some epochs
- Compute gradient tensor \mathbb{G} of parameters \mathbb{W} averaged over datapoints \mathcal{D} :

$$
\mathbb{G} \leftarrow \frac{1}{|\mathcal{D}|} \nabla_{\mathbb{W}} \sum_{(x, y) \in \mathcal{D}} \mathcal{L}(\boldsymbol{x}, y ; \mathbb{W})
$$

- Update the parameters by taking steps in the opposite direction of the gradient tensor multiplied by η :

$$
\mathbb{W}^{(t+1)} \leftarrow \mathbb{W}^{(t)}-\eta \mathbb{G}
$$

- Reduce learning rate (annealing) if some criteria are met or according to a scheduler

Batch

- In (vanilla) Gradient Descent, first all data points are processed, and their gradients are aggregated, and then a small parameter update is made
- Training can take very long time
- Training is not stochastic
- Batch/Mini-batch
- A (small) set of data to be processed together
- Suitable for multi-processing capabilities of GPUs
- Stochastic Gradient Descent
- In each step, we process a (mini-)batch of data, calculate their gradients, and update parameters
- Typical setting for training deep learning models

(Mini-batch) Stochastic Gradient Descent algorithm

- A model with parameters \mathbb{W} at time step $t \rightarrow \mathbb{W}^{(t)}$, learning rate η, and set of datapoints \mathcal{D}
- Loop until some exit criteria are met
- $\widehat{\mathcal{D}}$ is the set of datapoints in the minibatch
- Compute gradient tensor \mathbb{G} of parameters \mathbb{W} averaged over batch datapoints $\widehat{\mathcal{D}}$:

$$
\mathbb{G} \leftarrow \frac{1}{|\widehat{\mathcal{D}}|} \nabla_{\mathbb{W}} \sum_{(x, y) \in \widehat{\mathcal{D}}} \mathcal{L}(x, y ; \mathbb{W})
$$

- Update the parameters by taking steps in the opposite direction of the gradient tensor multiplied by η :

$$
\mathbb{W}^{(t+1)} \leftarrow \mathbb{W}^{(t)}-\eta \mathbb{G}
$$

- Reduce learning rate (annealing) if some criteria are met or according to a scheduler

Other gradient-based optimizations

- Some limitations of the mentioned SGD algorithms
- Choosing learning rate is hard
- Choosing annealing method/rate is hard
- Same learning rate is applied to all parameters
- Can get trapped in non-optimal local minima and saddle points
- Some other commonly used algorithms:
- Nestrov accelerated gradient
- Adagrad
- Adam

