Winter semester 2022/23

344.175 VL: Natural Language Processing
Neural Networks for NLP — a Walkthrough

Navid Rekab-saz

Email: navid.rekabsaz@jku.at
Office hours: https://navid-officehours.youcanbook.me

J ¥ U Institute of
® Computational
UNIVERSITY LINZ | ® Perception

mailto:navid.rekabsaz@jku.at
https://navid-officehours.youcanbook.me/

Notation — recap

a — scalar

b — vector
it" element of b is the scalar b;

C — matrix
it" vector of C is c;

- jt" element of the it" vector of C is the scalar Ci]

Tensor: generalization of scalar, vector, matrix to any
arbitrary dimension

Probability

= Conditional probability, given two random variables X and Y
P(Y|X)

= Probability distribution
- For a discrete random variable Y with K states (classes)

c0<P(Y) <1
° 25:1 P(Y;) =1
- E.g.with K = 4 states: [0.2 0.3 0.45 0.05]

= Expected value overasetD

1
Eblf] =151), @)

Note: The definition of expected value is not completely precise. Though, it suffices for our use in this lecture

Neural Computation

dendrites

synapse

axon hillock

e — — “ dendrite
a4 v

soma
nucleus
initial Ranvier

segment schwann
cells

dendrites

Source https://en.wikipedia.org/wiki/Dendrite

http://web.stanford.edu/class/cs224n/index.html
https://en.wikipedia.org/wiki/Dendrite

An Artificial Neuron

L0 oy

synapse
axon from a neuron

woLo
dendm;;\\\

cell body

Zwimi +b

f (Z w;T; + b)

|
output axon

activation
function

w121

f

W2

source

http://web.stanford.edu/class/cs224n/index.html

Learning with Neural Networks

= Design the network’s architecture
= Loop until some exit criteria are met
- Sample a (mini)batch from training data D
- Execute forward pass: predict the output tensor of each given input tensor
- Calculate loss
- Optimize the network to reduce loss

» Calculate the gradient of each parameter regarding the loss function
using the backpropagation algorithm

- Update parameters using their gradients

Learning with Neural Networks

= Design the network’s architecture

= Loop until some exit criteria are met
- Sample a (mini)batch from training data D
- Execute forward pass: predict the output tensor of each given input tensor
- Calculate loss
- Optimize the network to reduce loss

» Calculate the gradient of each parameter regarding the loss function
using the backpropagation algorithm

- Update parameters using their gradients

Artificial Neural Networks

= Neural Networks are non-linear functions and universal
approximators

= Neural networks can readily be defined as probabilistic models
which estimate P(Y|X)

= Considering model parameter, P(Y|X) can be written as
P(Y|x; W)
- x is an input vector and W is the set of model parameters
- The model’s predicted probability distribution is:

y =P |x; W)

A sample neural network (Multi Layer Perceptron)

Hidden

Predicted output

input vector probability distribution

size 3x4 size 4x2

parameter matrices

Hidden nodes/layers apply non-linear functions to their inputs

Linear

fx) =x

10

Non-linearities — Sigmoid

1
1+e™*

o(x) =

= squashes input between 0 and 1
= Qutput becomes like a probability value

11

Hyperbolic Tangent (Tanh)

e?* — 1

tanh(x) = T

= squashes input between -1 and 1

' | Nl Tanh

12

Rectified Linear Unit (RelLU)
ReLU(x) = max(0, x)

= fits to deep architectures, as it prevents vanishing
gradient

13

Examples

x=[1 3] w=[0(')5 —05 2 0 0]

0 0 4 -1
Linear transformation xW:

o0 o 4 _qy=[05 -05 2 12 —4]

Non-linear transformation ReLU(xW):
ReLU([0.5 —-05 2 12 —-4])D=[0.5 0.0 2 12 0.0]

Non-linear transformation o (xW):
o(f[0.5 —-05 2 12 —-4])=1[0.62 0.37 0.88 0.99 0.11]

Non-linear transformation tanh(xW):

tanh([0.5 —-05 2 12 —-4])=[0.46 —-0.46 0.96 0.99 —0.99]

14

Learning with Neural Networks

Design the network’s architecture

Loop until some exit criteria are met

- Sample a (mini)batch from training data D

- Execute forward pass: predict the output tensor of each given input tensor
- Calculate loss

- Optimize the network to reduce loss

» Calculate the gradient of each parameter regarding the loss function
using the backpropagation algorithm

- Update parameters using their gradients

15

Early Stopping

= Run the model for several steps (epochs), and in each step
evaluate the model on the validation set

= Store the model if the evaluation results improve

= At the end, take the stored model with the best validation results as
the final model

16

Learning with Neural Networks

Design the network’s architecture
Loop until some exit criteria are met
- Sample a (mini)batch from training data D

- Execute forward pass: predict the output tensor of each given input tensor

- Calculate loss
- Optimize the network to reduce loss

» Calculate the gradient of each parameter regarding the loss function
using the backpropagation algorithm

- Update parameters using their gradients

17

Toy neural network

= A sample neural network is going to calculate the following function:
z(; W) = w2 % (2% x xwy +wp)

- x is input and W is the tensor of parameters
- Parameters are initialized with
wo=1 w; =3 wy =2
= A neural network first redefines this function as subfunctions of
basic/atomic operations with new intermediary variables:*
a=2x*x*Ww,
b=a+wy
c = w,?

Z=C*b

* To keep the example simple, the splitting is not applied to all basic operation 18

Computational Graph o

@ - @ 19

Forward pass

a=2x*xx*w,
a==6

Output probability distribution

Predicted output
probability distribution

y =P |x; W)

21

Softmax

= As discussed, neural networks can readily turn to
probabilistic models

= To do it, we need to transform the output vector z of a neural
network with K output classes to a probability distribution

- In the context of neural networks, z is usually called logits

= softmax turns a vector to a probability distribution
-z could be the output vector of a neural network

eZl

softmax(z); = 5%

: Zj
i=1€ “\
normalization term

22

Output probability distribution

Predicted output
probability distribution

y =P(Y|x; W)
= softmax(z)

23

Softmax — example

K = 4 classes
e 2l

softmax(z); =

12 f X
“= 5 5 h
16
';,:‘-‘F) |t
_ _ 14 """:";4 o log(x)
882;1' 10 S A/ 5 1
softmax(z) = 0.264
0.717] 5

Softmax characteristics

= The exponential function in softmax makes the
maximum becomes much higher than the others

= Softmax identifies the “max” but in a “soft” way!

= Softmax imposes competition between the predicted
output values, as in fact “winner takes (almost) all!”

- Winner-takes-all is the case when one value is 1 and the rest
are 0

- Softmax provides a soft distribution of winner-takes-all

- This resembles the competition between nearby neurons in the
cortex

25

Learning with Neural Networks

Design the network’s architecture
Loop until some exit criteria are met
- Sample a (mini)batch from training data D
- Execute forward pass: predict the output tensor of each given input tensor

- Calculate loss

- Optimize the network to reduce loss

» Calculate the gradient of each parameter regarding the loss function
using the backpropagation algorithm

- Update parameters using their gradients

26

Sample neural network

Predicted output
probability distribution Labels

y=P¥|lx;W) > Y

= softmax(z) L

27

Cross Entropy Loss

= (Gjven a classification task with K classes
- known as multi-class classification

= y — predicted probability distribution of the classes
= y — actual probability distribution of the classes (labels)
= Cross Entropy loss is defined as:

K
L =—-Ep 2 yilogy;
=1

- D — the set of training data
= |n neural networks, we can write it as:

K
L(W) = ~Ep) y;log PVl W)
=1

28

Cross Entropy Loss — example 1

= A multi-label scenario:

10.004- -0
. l0.013 _lo.2s
Y= lo264] 27| o

0.717. 0.75.

K
L=- z yilogy;
i=1

L =—(0x10g0.004 + 0.25%10g 0.013 + 0x log 0.264 + 0.75% 10g 0.717)
L=—-(0-0.471+ 0-0.108)
L =0.579

Cross Entropy Loss — example 2

= A single-label scenario:

10.004-
0.013 B
0264 ¥
0.717.

K
L=- z yilogy;
i=1

L =—(0x1og0.004 + 0x10og0.013 + 0x log0.264 + 1x 10g 0.717)
L=—(04+0+0-0.144)
L =0.144

<)
Il

Soo3

30

Negative Log Likelihood (NLL) Loss
= Single-label classification is the most common scenario

= In this case, we can simplify Cross Entropy formulation to

K
LOW) = —IEDZ: yilog P(Y;|x; W) = —Ep log P(Y;|x; W)
=1

- where [is the index of the correct class

= This loss function is known as Negative Log Likelihood (NLL)
- NLL is a special case of Cross Entropy

31

NLL + softmax

What happens when we use NLL and softmax in the output layer of a
neural network?

L(W) = —Eplog P(Y;|x; W) = —E log softmax(z),
z — output vector before softmax (logits)

Z]

K
e
L(W) = —Eplog=z = —[Ep llog el — logz: ezi]
i=1

Z.
i=1 €7

K
L(W) = —Ep [zl — logz ezi]
i=1

This term is (almost)
equal to max(z)

32

NLL + softmax — example 1

K
L=— [zl — log ezi]
=1

l

z=[1 2 05 6]
= |f the correct class is the first one, [= 1:
L=—[1-log(e!+e?+e%" +e®)]=-1+6.02=5.02
= |f the correct class is the third one, [= 3:
L =-[0.5—1log(e! +e? +e% +e%]=-0.5+6.02=5.52
= If the correct class is the fourth one, [= 4:

L=—[6—1log(e! +e?+e% +e%]=-6+6.02=0.02

33

NLL + softmax — example 2

K

L=— [zl — logz ezi]
i=1

|

z=[1 2 5 6
If the correct class is the first one, [= 1:
L=—[1—-log(e!+e?+e°>+e®)]=-1+633=5.33
If the correct class is the third one, [= 3:
L=—[5—1log(e! +e?+e°>+e%]=-5+6.33=1.33
If the correct class is the fourth one, [= 4:

L=—[6—1log(e! +e?+e°>+e%]=-6+6.33=0.33

34

Learning with Neural Networks

Design the network’s architecture

Loop until some exit criteria are met
- Sample a (mini)batch from training data D
- Execute forward pass: predict the output tensor of each given input tensor
- Calculate loss function of the (mini)batch

- Optimize the network to reduce loss

» Calculate the gradient of each parameter regarding the loss function
using the backpropagation algorithm

 Update parameters using their gradients

35

Toy neural network

z(; W) = w2 % (2% x xwy +wp)

= |pitialization: wo =1 w; =3 w, =2
= Intermediary variables:

a=2x*xx*Ww,

b=a+w,
c = w,?
Z=c*b
= An “imaginary” loss:
L=y—2z

For the current datapoint x we have y = 38

36

Z=cC*b
z =28

What changes
should we made
to the values of
W in order to
reduce L?

a=2x*xx*w,
a==6

® Q @ 37

Optimization

1400~ .

1200.

1000 4...

000~

600 -

400 -]

20U

......

Source: https://www.semanticscholar.org/paper/Novel-composition-test-functions-for-numerical-Liang-Suganthan/2004e25c7239c¢71b18b8fa3a0fea78721f6cat9e

38

https://www.semanticscholar.org/paper/Novel-composition-test-functions-for-numerical-Liang-Suganthan/2004e25c7239c71b18b8fa3a0fea78721f6ca69e

Gradient-based optimization

= Assumption 1: optimize £ in respect to each parameter w € W
independently regardless of other parameters

Function £ when all parameters remain unchanged
and only w € W changes

Current state

Optimur:n L when
only w ichanges

39

Gradient Descent optimization

= Assumption 2: decide about your course of change forw € W
according to the local changes in £

Current state

--- 0L

direction and magnitude _ (3_/2 ! w

for updating w ow Gradient direction
--- O \ and magnitude

After update

40

Gradient Descent optimization

= We hence need the derivatives of L in respect to each w € W:

oL 0L 0L
6W0 0W1 aWZ

VwL —

= VwL is often called gradient tensor, whose elements are the partial
derivatives of L in respect to each parameter:

41

Gradient Descent algorithm

= A model with parameters W at time step t — WO, learning rate n,
and set of datapoints D

= Loop for some epochs

- Compute gradient tensor G of parameters W averaged over
datapoints D:

1

G <——Vw2 L(x,y; W)
|D| (x,y)ED

- Update the parameters by taking steps in the opposite direction
of the gradient tensor multiplied by 7:

WD « W — nG

- Reduce learning rate (annealing) if some criteria are met or
according to a scheduler

42

Learning with Neural Networks

Design the network’s architecture
Loop until some exit criteria are met
- Sample a (mini)batch from training data D
- Execute forward pass: predict the output tensor of each given input tensor
- Calculate loss
- Optimize the network to reduce loss

« Calculate the gradient of each parameter regarding the loss function
using the backpropagation algorithm

- Update parameters using their gradients

43

Z=cC*b
z =28

0L

—_— =7

0W0

oL

a_wl_' a=2%xx*xWw
oL 2=
— =7

0W2

Chain rule

= Gradient tensor: VL = |7— =7

0L 0L _? 0L =7]
aWO aW1 aWZ

= Partial derivatives can be calculated using local derivates
and the chain rule:

0L 0LOz Ob
dw, 0z b dw,

0L 0L0zdb da
ow,; 0z 0bda dw,

0L 0L0z Oc
ow, 0z dc ow,

= Local derivates are pre-defined on each atomic operation in the
neural computation graph

45

a=2x*xx*w,
a==6

Local derivatives

dc/ow, = 2 *w,

a=2%xx*xWw

db/dw, = 1
a==~6

da/ow; =2 xx

Backward pass

= Tracing the computation graph from top to bottom and calculating
the values of local derivatives

= |t means that:;

- We need to keep the values of all intermediate variables after
forward pass

- For the local derivative of every atomic operation, we now have
a new stored value

48

Backward pass

Calculating the values
of local derivatives.

dc/ow, = 2 *w,

a=2x*xx*w,

db/dw, = 1
a==~6

dc/ow, = 4
ob/owy =1

da/ow; =2 xx

da/ow, = 2

Backpropagation

Calculating partial derivatives:

oL _ 8Lz db

= = — | X4X] = —
owg 0z 0b dwy 1x4x1 4

0L _ 0L0z db 0da

= = —1X4X]1IXZ = —
ow, 0z 0b da dw; 1x4x1x2 8

oL 0L0z Oc
ow, 9z dc ow,

= —1X7%X4 = —28

Backpropagation

Calculating the values
of partial derivatives.

a=2x*xx*w,
a==6

db/aw, = 1

dc/ow, = 2 *w,
dc/ow, = 4

ob/dw, = 1

da/ow; =2 xx

Learning with Neural Networks

Design the network’s architecture
Loop until some exit criteria are met

- Sample a (mini)batch from training data D

- Execute forward pass: predict the output tensor of each given input tensor
- Calculate loss function of the (mini)batch
- Optimize the network to reduce loss

» Calculate the gradient of each parameter regarding the loss function
using the backpropagation algorithm

- Update parameters using their gradients

52

Gradient Descent algorithm — recap

= A model with parameters W at time step t — WO, learning rate n,
and set of datapoints D

= Loop for some epochs

- Compute gradient tensor G of parameters W averaged over
datapoints D:

1

G <——Vw2 L(x,y; W)
|D| (x,y)ED

- Update the parameters by taking steps in the opposite direction
of the gradient tensor multiplied by 7:

WD « W — nG

- Reduce learning rate (annealing) if some criteria are met or
according to a scheduler

53

Batch

In (vanilla) Gradient Descent, first all data points are processed, and their
gradients are aggregated, and then a small parameter update is made

- Training can take very long time
- Training is not stochastic

Batch/Mini-batch
- A (small) set of data to be processed together
- Suitable for multi-processing capabilities of GPUs

Stochastic Gradient Descent

- In each step, we process a (mini-)batch of data, calculate their
gradients, and update parameters

- Typical setting for training deep learning models

54

(Mini-batch) Stochastic Gradient Descent algorithm

= A model with parameters W at time step t — WO, learning rate n,
and set of datapoints D

= Loop until some exit criteria are met

D is the set of datapoints in the minibatch

Compute gradient tensor G of parameters W averaged over
batch datapoints D:

| | (x.y)€D

Update the parameters by taking steps in the opposite direction
of the gradient tensor multiplied by 7:

WD « W) —nG

Reduce learning rate (annealing) if some criteria are met or
according to a scheduler

95

Other gradient-based optimizations

= Some limitations of the mentioned SGD algorithms

Choosing learning rate is hard

Choosing annealing method/rate is hard

Same learning rate is applied to all parameters

Can get trapped in non-optimal local minima and saddle points

= Some other commonly used algorithms:

Nestrov accelerated gradient
Adagrad
Adam

56

