
Institute of
Computational
Perception

344.175 VL: Natural Language Processing
Neural Networks for NLP – a Walkthrough

Navid Rekab-saz

Email: navid.rekabsaz@jku.at
Office hours: https://navid-officehours.youcanbook.me

Winter semester 2022/23

mailto:navid.rekabsaz@jku.at
https://navid-officehours.youcanbook.me/

2

Notation – recap

§ 𝑎 → scalar

§ 𝒃→ vector
- 𝑖!" element of 𝒃 is the scalar 𝑏#

§ 𝑪 → matrix
- 𝑖!" vector of 𝑪 is 𝒄#
- 𝑗!" element of the 𝑖!" vector of 𝑪 is the scalar 𝑐#,%

§ Tensor: generalization of scalar, vector, matrix to any
arbitrary dimension

3

Probability

§ Conditional probability, given two random variables 𝑋 and 𝑌:

𝑃(𝑌|𝑋)

§ Probability distribution
- For a discrete random variable 𝑌 with 𝐾 states (classes)

• 0 ≤ 𝑃 𝑌# ≤ 1
• ∑#&'(𝑃 𝑌# = 1

- E.g. with 𝐾 = 4 states: 0.2 0.3 0.45 0.05

§ Expected value over a set 𝒟

𝔼𝒟 𝑓 =
1
𝒟
9

*∈𝒟
𝑓(𝑥)

Note: The definition of expected value is not completely precise. Though, it suffices for our use in this lecture

4

Neural Computation

Source https://en.wikipedia.org/wiki/Dendrite

http://web.stanford.edu/class/cs224n/index.html
https://en.wikipedia.org/wiki/Dendrite

5

An Artificial Neuron

source

http://web.stanford.edu/class/cs224n/index.html

6

Learning with Neural Networks

§ Design the network’s architecture

§ Loop until some exit criteria are met

- Sample a (mini)batch from training data 𝒟

- Execute forward pass: predict the output tensor of each given input tensor

- Calculate loss
- Optimize the network to reduce loss

• Calculate the gradient of each parameter regarding the loss function
using the backpropagation algorithm

• Update parameters using their gradients

7

Learning with Neural Networks

§ Design the network’s architecture

§ Loop until some exit criteria are met

- Sample a (mini)batch from training data 𝒟

- Execute forward pass: predict the output tensor of each given input tensor

- Calculate loss
- Optimize the network to reduce loss

• Calculate the gradient of each parameter regarding the loss function
using the backpropagation algorithm

• Update parameters using their gradients

8

Artificial Neural Networks

§ Neural Networks are non-linear functions and universal
approximators

§ Neural networks can readily be defined as probabilistic models
which estimate 𝑃(𝑌|𝑋)

§ Considering model parameter, 𝑃(𝑌|𝑋) can be written as
𝑃(𝑌|𝒙;𝕎)
- 𝒙 is an input vector and 𝕎 is the set of model parameters
- The model’s predicted probability distribution is:

;𝒚 = 𝑃 𝑌 𝒙;𝕎

9

A sample neural network (Multi Layer Perceptron)

𝑾𝟏
size 3x4

𝑾𝟐
size 4x2

input vector
𝒙

parameter matrices

Predicted output
probability distribution
;𝒚 = 𝑃 𝑌 𝒙;𝕎

Hidden nodes/layers apply non-linear functions to their inputs

logits
𝒛

10

Linear

𝑓 𝑥 = 𝑥

11

Non-linearities – Sigmoid

𝜎 𝑥 =
1

1 + 𝑒!"

§ squashes input between 0 and 1
§ Output becomes like a probability value

12

Hyperbolic Tangent (Tanh)

tanh 𝑥 =
𝑒#" − 1
𝑒#" + 1

§ squashes input between -1 and 1

𝜎
Tanh

13

Rectified Linear Unit (ReLU)

ReLU 𝑥 = max(0, 𝑥)

§ fits to deep architectures, as it prevents vanishing
gradient

14

Examples

𝒙 = 1 3 𝑾 = 0.5 −0.5 2 0 0
0 0 0 4 −1

§ Linear transformation 𝒙𝑾:

𝒙𝑾 = 1 3 0.5 −0.5 2 0 −1
0 0 0 4 −1 = 𝟎. 𝟓 −𝟎. 𝟓 𝟐 𝟏𝟐 −𝟒

§ Non-linear transformation ReLU(𝒙𝑾):
ReLU 0.5 −0.5 2 12 −4 = 𝟎. 𝟓 𝟎. 𝟎 𝟐 𝟏𝟐 𝟎. 𝟎

§ Non-linear transformation 𝜎(𝒙𝑾):
𝜎 0.5 −0.5 2 12 −4 = 𝟎. 𝟔𝟐 𝟎. 𝟑𝟕 𝟎. 𝟖𝟖 𝟎. 𝟗𝟗 𝟎. 𝟏𝟏

§ Non-linear transformation tanh(𝒙𝑾):
tanh 0.5 −0.5 2 12 −4 = 𝟎. 𝟒𝟔 −𝟎. 𝟒𝟔 𝟎. 𝟗𝟔 𝟎. 𝟗𝟗 −𝟎. 𝟗𝟗

15

Learning with Neural Networks

§ Design the network’s architecture

§ Loop until some exit criteria are met

- Sample a (mini)batch from training data 𝒟

- Execute forward pass: predict the output tensor of each given input tensor

- Calculate loss
- Optimize the network to reduce loss

• Calculate the gradient of each parameter regarding the loss function
using the backpropagation algorithm

• Update parameters using their gradients

16

Early Stopping

§ Run the model for several steps (epochs), and in each step
evaluate the model on the validation set

§ Store the model if the evaluation results improve
§ At the end, take the stored model with the best validation results as

the final model

17

Learning with Neural Networks

§ Design the network’s architecture

§ Loop until some exit criteria are met

- Sample a (mini)batch from training data 𝒟

- Execute forward pass: predict the output tensor of each given input tensor

- Calculate loss
- Optimize the network to reduce loss

• Calculate the gradient of each parameter regarding the loss function
using the backpropagation algorithm

• Update parameters using their gradients

18

Toy neural network

§ A sample neural network is going to calculate the following function:

𝑧 𝑥;𝕎 = 𝑤,, ∗ (2 ∗ 𝑥 ∗ 𝑤' +𝑤-)

- 𝑥 is input and 𝕎 is the tensor of parameters
- Parameters are initialized with

𝑤- = 1 𝑤' = 3 𝑤, = 2
§ A neural network first redefines this function as subfunctions of

basic/atomic operations with new intermediary variables:*

𝑎 = 2 ∗ 𝑥 ∗ 𝑤'
𝑏 = 𝑎 + 𝑤-
𝑐 = 𝑤,,

𝑧 = 𝑐 ∗ 𝑏

* To keep the example simple, the splitting is not applied to all basic operation

19

𝑤!
𝑤! = 1

𝑥 𝑤"
𝑤" = 3

𝑤#
𝑤# = 2

𝑎 = 2 ∗ 𝑥 ∗ 𝑤"

𝑐 = 𝑤##𝑏 = 𝑎 + 𝑤!

𝑧 = 𝑐 ∗ 𝑏Computational Graph

20

𝑤!
𝑤! = 1

𝑥 𝑤"
𝑤" = 3

𝑤#
𝑤# = 2

𝑎 = 2 ∗ 𝑥 ∗ 𝑤"

𝑐 = 𝑤##𝑏 = 𝑎 + 𝑤!

𝑧 = 𝑐 ∗ 𝑏Forward pass

𝑎 = 6

𝑏 = 7

𝑧 = 28

𝑐 = 4

𝑥 = 1

21

Output probability distribution

𝑾𝟏 𝑾𝟐𝒙
Predicted output

probability distribution

;𝒚 = 𝑃 𝑌 𝒙;𝕎

logits
𝒛

22

Softmax

§ As discussed, neural networks can readily turn to
probabilistic models

§ To do it, we need to transform the output vector 𝒛 of a neural
network with 𝐾 output classes to a probability distribution
- In the context of neural networks, 𝒛 is usually called logits

§ softmax turns a vector to a probability distribution
- 𝒛 could be the output vector of a neural network

softmax(𝒛)G =
𝑒H!

∑IJKL 𝑒H"

normalization term

23

Output probability distribution

𝑾𝟏 𝑾𝟐𝒙

Predicted output
probability distribution

;𝒚 = 𝑃 𝑌 𝒙;𝕎
= softmax(𝒛)

logits
𝒛

24

Softmax – example

𝐾 = 4 classes

softmax(𝒛)> =
𝑒?!

∑#&'(𝑒?"

𝒛 =

1
2
5
6

softmax(𝒛) =

0.004
0.013
0.264
0.717

𝑒!
𝑥

log(𝑥)

25

Softmax characteristics

§ The exponential function in softmax makes the
maximum becomes much higher than the others

§ Softmax identifies the “max” but in a “soft” way!

§ Softmax imposes competition between the predicted
output values, as in fact “winner takes (almost) all!”
- Winner-takes-all is the case when one value is 1 and the rest

are 0
- Softmax provides a soft distribution of winner-takes-all
- This resembles the competition between nearby neurons in the

cortex

26

Learning with Neural Networks

§ Design the network’s architecture

§ Loop until some exit criteria are met

- Sample a (mini)batch from training data 𝒟

- Execute forward pass: predict the output tensor of each given input tensor

- Calculate loss
- Optimize the network to reduce loss

• Calculate the gradient of each parameter regarding the loss function
using the backpropagation algorithm

• Update parameters using their gradients

27

Sample neural network

𝑾𝟏 𝑾𝟐𝒙

Predicted output
probability distribution

;𝒚 = 𝑃 𝑌 𝒙;𝕎
= softmax(𝒛)

logits
𝒛

Labels
𝒚

ℒ

28

Cross Entropy Loss

§ Given a classification task with 𝐾 classes
- known as multi-class classification

§ -𝒚→ predicted probability distribution of the classes
§ 𝒚→ actual probability distribution of the classes (labels)
§ Cross Entropy loss is defined as:

ℒ = −𝔼𝒟9
#&'

(

𝑦# log [𝑦#

- 𝒟 → the set of training data
§ In neural networks, we can write it as:

ℒ(𝕎) = −𝔼𝒟9
#&'

(

𝑦# log 𝑃 𝑌# 𝒙;𝕎

29

Cross Entropy Loss – example 1

§ A multi-label scenario:

-𝒚 =

0.004
0.013
0.264
0.717

𝒚 =

0
0.25
0

0.75

ℒ = −U
"#$

%

𝑦" log W𝑦"

ℒ = − 0× log 0.004 + 0.25× log 0.013 + 0× log 0.264 + 0.75× log 0.717

ℒ = − 0−0.471 + 0−0.108

ℒ = 0.579

30

Cross Entropy Loss – example 2

§ A single-label scenario:

-𝒚 =

0.004
0.013
0.264
0.717

𝒚 =

0
0
0
1

ℒ = −U
"#$

%

𝑦" log W𝑦"

ℒ = − 0× log 0.004 + 0× log 0.013 + 0× log 0.264 + 1× log 0.717

ℒ = − 0 + 0 + 0−0.144

ℒ = 0.144

31

Negative Log Likelihood (NLL) Loss

§ Single-label classification is the most common scenario

§ In this case, we can simplify Cross Entropy formulation to

ℒ 𝕎 = −𝔼𝒟9
#&'

(

𝑦# log 𝑃 𝑌# 𝒙;𝕎 = −𝔼𝒟 log 𝑃 𝑌> 𝒙;𝕎

- where 𝑙 is the index of the correct class

§ This loss function is known as Negative Log Likelihood (NLL)
- NLL is a special case of Cross Entropy

32

NLL + softmax

§ What happens when we use NLL and softmax in the output layer of a
neural network?

ℒ 𝕎 = −𝔼𝒟 log 𝑃 𝑌> 𝒙;𝕎 = −𝔼𝒟 log softmax 𝒛 >

𝒛→ output vector before softmax (logits)

ℒ 𝕎 = −𝔼𝒟 log
𝑒?!

∑#&'(𝑒?"
= −𝔼𝒟 log 𝑒?! − log9

#&'

(

𝑒?"

ℒ 𝕎 = −𝔼𝒟 𝑧> − log9
#&'

(

𝑒?"

This term is (almost)
equal to max(𝒛)

33

NLL + softmax – example 1

ℒ = − 𝑧& − logU
"#$

%

𝑒'!

𝒛 = 1 2 0.5 6

§ If the correct class is the first one, 𝑙 = 1:

ℒ = − 1 − log 𝑒' + 𝑒, + 𝑒-.G + 𝑒H = −1 + 6.02 = 𝟓. 𝟎𝟐

§ If the correct class is the third one, 𝑙 = 3:

ℒ = − 0.5 − log 𝑒' + 𝑒, + 𝑒-.G + 𝑒H = −0.5 + 6.02 = 𝟓. 𝟓𝟐

§ If the correct class is the fourth one, 𝑙 = 4:

ℒ = − 6 − log 𝑒' + 𝑒, + 𝑒-.G + 𝑒H = −6 + 6.02 = 𝟎. 𝟎𝟐

34

NLL + softmax – example 2

ℒ = − 𝑧& − logU
"#$

%

𝑒'!

𝒛 = 1 2 5 6

§ If the correct class is the first one, 𝑙 = 1:

ℒ = − 1 − log 𝑒' + 𝑒, + 𝑒G + 𝑒H = −1 + 6.33 = 𝟓. 𝟑𝟑

§ If the correct class is the third one, 𝑙 = 3:

ℒ = − 5 − log 𝑒' + 𝑒, + 𝑒G + 𝑒H = −5 + 6.33 = 𝟏. 𝟑𝟑

§ If the correct class is the fourth one, 𝑙 = 4:

ℒ = − 6 − log 𝑒' + 𝑒, + 𝑒G + 𝑒H = −6 + 6.33 = 𝟎. 𝟑𝟑

35

Learning with Neural Networks

§ Design the network’s architecture

§ Loop until some exit criteria are met

- Sample a (mini)batch from training data 𝒟

- Execute forward pass: predict the output tensor of each given input tensor

- Calculate loss function of the (mini)batch

- Optimize the network to reduce loss

• Calculate the gradient of each parameter regarding the loss function
using the backpropagation algorithm

• Update parameters using their gradients

36

Toy neural network

𝑧 𝑥;𝕎 = 𝑤,, ∗ (2 ∗ 𝑥 ∗ 𝑤' +𝑤-)

§ Initialization: 𝑤(= 1 𝑤$ = 3 𝑤) = 2
§ Intermediary variables:

𝑎 = 2 ∗ 𝑥 ∗ 𝑤'
𝑏 = 𝑎 + 𝑤-
𝑐 = 𝑤,,

𝑧 = 𝑐 ∗ 𝑏
§ An “imaginary” loss:

ℒ = 𝑦 − 𝑧
For the current datapoint 𝑥 we have 𝑦 = 38

37

𝑤!
𝑤! = 1

𝑥 𝑤"
𝑤" = 3

𝑤#
𝑤# = 2

𝑎 = 2 ∗ 𝑥 ∗ 𝑤"

𝑐 = 𝑤##𝑏 = 𝑎 + 𝑤!

𝑧 = 𝑐 ∗ 𝑏

𝑎 = 6

𝑏 = 7

𝑧 = 28

𝑐 = 4

𝑥 = 1

𝑦 = 38
ℒ = 10

ℒ = 𝑦 − 𝑧

What changes
should we made
to the values of
𝕎 in order to
reduce ℒ?

38

Optimization

Source: https://www.semanticscholar.org/paper/Novel-composition-test-functions-for-numerical-Liang-Suganthan/2004e25c7239c71b18b8fa3a0fea78721f6ca69e

ℒ

𝑤!
𝑤"

https://www.semanticscholar.org/paper/Novel-composition-test-functions-for-numerical-Liang-Suganthan/2004e25c7239c71b18b8fa3a0fea78721f6ca69e

39

Gradient-based optimization

§ Assumption 1: optimize ℒ	in respect to each parameter 𝑤 ∈ 𝕎
independently regardless of other parameters

𝑤

ℒ

Optimum ℒ when
only 𝑤 changes

Function ℒ when all parameters remain unchanged
and only 𝑤 ∈ 𝕎 changes

Current state

40

Gradient Descent optimization

𝑤

ℒ

Current state

After update

§ Assumption 2: decide about your course of change for 𝑤 ∈ 𝕎
according to the local changes in ℒ

𝜕ℒ
𝜕𝑤−

𝜕ℒ
𝜕𝑤 Gradient direction

and magnitude

direction and magnitude
for updating 𝑤

41

Gradient Descent optimization

§ We hence need the derivatives of ℒ in respect to each 𝑤 ∈ 𝕎:

∇𝕎ℒ =
𝜕ℒ
𝜕𝑤-

𝜕ℒ
𝜕𝑤'

𝜕ℒ
𝜕𝑤,

…

§ ∇𝕎ℒ is often called gradient tensor, whose elements are the partial
derivatives of ℒ in respect to each parameter:

42

Gradient Descent algorithm

§ A model with parameters 𝕎 at time step t → 𝕎(,), learning rate η,
and set of datapoints 𝒟

§ Loop for some epochs

- Compute gradient tensor 𝔾 of parameters 𝕎 averaged over
datapoints 𝒟:

𝔾 ←
1
𝒟
∇𝕎9

(𝒙,O)∈𝒟
ℒ(𝒙, 𝑦;𝕎)

- Update the parameters by taking steps in the opposite direction
of the gradient tensor multiplied by 𝜂:

𝕎(!P') ←𝕎(!) − 𝜂𝔾
- Reduce learning rate (annealing) if some criteria are met or

according to a scheduler

43

Learning with Neural Networks

§ Design the network’s architecture

§ Loop until some exit criteria are met

- Sample a (mini)batch from training data 𝒟

- Execute forward pass: predict the output tensor of each given input tensor

- Calculate loss
- Optimize the network to reduce loss

• Calculate the gradient of each parameter regarding the loss function
using the backpropagation algorithm

• Update parameters using their gradients

44

𝑤!
𝑤! = 1

𝑥 𝑤"
𝑤" = 3

𝑤#
𝑤# = 2

𝑎 = 2 ∗ 𝑥 ∗ 𝑤"

𝑐 = 𝑤##𝑏 = 𝑎 + 𝑤!

𝑧 = 𝑐 ∗ 𝑏

𝑎 = 6

𝑏 = 7

𝑧 = 28

𝑐 = 4

𝑥 = 1

𝑦 = 38
ℒ = 10

ℒ = 𝑦 − 𝑧

𝜕ℒ
𝜕𝑤-

=?

𝜕ℒ
𝜕𝑤'

=?

𝜕ℒ
𝜕𝑤,

=?

45

Chain rule

§ Gradient tensor: ∇𝕎ℒ =
Qℒ
QR$

=? Qℒ
QR%

=? Qℒ
QR&

=?

§ Partial derivatives can be calculated using local derivates
and the chain rule:

𝜕ℒ
𝜕𝑤-

=
𝜕ℒ
𝜕𝑧
𝜕𝑧
𝜕𝑏

𝜕𝑏
𝜕𝑤-

𝜕ℒ
𝜕𝑤'

=
𝜕ℒ
𝜕𝑧
𝜕𝑧
𝜕𝑏
𝜕𝑏
𝜕𝑎

𝜕𝑎
𝜕𝑤'

𝜕ℒ
𝜕𝑤,

=
𝜕ℒ
𝜕𝑧
𝜕𝑧
𝜕𝑐

𝜕𝑐
𝜕𝑤,

§ Local derivates are pre-defined on each atomic operation in the
neural computation graph

46

𝑤!
𝑤! = 1

𝑥 𝑤"
𝑤" = 3

𝑤#
𝑤# = 2

𝑎 = 2 ∗ 𝑥 ∗ 𝑤"

𝑐 = 𝑤##𝑏 = 𝑎 + 𝑤!

𝑧 = 𝑐 ∗ 𝑏

𝜕ℒ
𝜕𝑤!

=?
𝜕ℒ
𝜕𝑤!

=?
𝜕ℒ
𝜕𝑤"

=?

𝜕𝑏
𝜕𝑎

𝜕𝑏
𝜕𝑤!

𝜕𝑧
𝜕𝑐

𝜕𝑧
𝜕𝑏

𝜕𝑎
𝜕𝑤"

𝜕𝑐
𝜕𝑤#

𝑦 = 38
ℒ = 10

ℒ = 𝑦 − 𝑧 𝜕ℒ
𝜕𝑧

𝑎 = 6

𝑏 = 7

𝑧 = 28

𝑐 = 4

𝑥 = 1

47

𝑤!
𝑤! = 1

𝑥 𝑤"
𝑤" = 3

𝑤#
𝑤# = 2

𝑎 = 2 ∗ 𝑥 ∗ 𝑤"

𝑐 = 𝑤##𝑏 = 𝑎 + 𝑤!

𝑧 = 𝑐 ∗ 𝑏

⁄𝜕𝑏 𝜕𝑎 = 1

⁄𝜕𝑏 𝜕𝑤! = 1

⁄𝜕𝑧 𝜕𝑐 = 𝑏⁄𝜕𝑧 𝜕𝑏 = 𝑐

⁄𝜕𝑎 𝜕𝑤! = 2 ∗ 𝑥

⁄𝜕𝑐 𝜕𝑤" = 2 ∗ 𝑤"

Local derivatives𝑦 = 38
ℒ = 10

ℒ = 𝑦 − 𝑧 ⁄𝜕ℒ 𝜕𝑧 = −1

𝑎 = 6

𝑏 = 7

𝑧 = 28

𝑐 = 4

𝑥 = 1

𝜕ℒ
𝜕𝑤!

=?
𝜕ℒ
𝜕𝑤!

=?
𝜕ℒ
𝜕𝑤"

=?

48

Backward pass

§ Tracing the computation graph from top to bottom and calculating
the values of local derivatives

§ It means that:
- We need to keep the values of all intermediate variables after

forward pass
- For the local derivative of every atomic operation, we now have

a new stored value

49

𝑤!
𝑤! = 1

𝑥 𝑤"
𝑤" = 3

𝑤#
𝑤# = 2

𝑎 = 2 ∗ 𝑥 ∗ 𝑤"

𝑐 = 𝑤##𝑏 = 𝑎 + 𝑤!

𝑧 = 𝑐 ∗ 𝑏 Backward pass

⁄𝜕𝑏 𝜕𝑎 = 1

⁄𝜕𝑏 𝜕𝑤! = 1

⁄𝜕𝑧 𝜕𝑐 = 𝑏⁄𝜕𝑧 𝜕𝑏 = 𝑐

⁄𝜕𝑐 𝜕𝑤" = 2 ∗ 𝑤"

Calculating the values
of local derivatives.

𝑎 = 6

𝑏 = 7

𝑧 = 28

𝑐 = 4

𝑥 = 1

⁄𝜕𝑧 𝜕𝑏 = 4

⁄𝜕𝑏 𝜕𝑎 = 1

⁄𝜕𝑏 𝜕𝑤! = 1
⁄𝜕𝑐 𝜕𝑤" = 4

⁄𝜕𝑧 𝜕𝑐 = 7

⁄𝜕𝑎 𝜕𝑤! = 2 ∗ 𝑥

⁄𝜕𝑎 𝜕𝑤# = 2

𝜕ℒ
𝜕𝑤!

=?
𝜕ℒ
𝜕𝑤!

=?
𝜕ℒ
𝜕𝑤"

=?

𝑦 = 38
ℒ = 10

ℒ = 𝑦 − 𝑧 ⁄𝜕ℒ 𝜕𝑧 = −1

⁄𝜕ℒ 𝜕𝑧 = −1

50

Backpropagation

Calculating partial derivatives:

Qℒ
QR$

= Qℒ
Q?

Q?
QT

QT
QR$

= −1×4×1 = −4

Qℒ
QR%

= Qℒ
Q?

Q?
QT

QT
QU

QU
QR%

= −1×4×1×2 = −8

Qℒ
QR&

= Qℒ
Q?

Q?
QV

QV
QR&

= −1×7×4 = −28

51

𝑤!
𝑤! = 1

𝑥 𝑤"
𝑤" = 3

𝑤#
𝑤# = 2

𝑎 = 2 ∗ 𝑥 ∗ 𝑤"

𝑐 = 𝑤##𝑏 = 𝑎 + 𝑤!

𝑧 = 𝑐 ∗ 𝑏

⁄𝜕𝑏 𝜕𝑎 = 1

⁄𝜕𝑏 𝜕𝑤! = 1

⁄𝜕𝑧 𝜕𝑐 = 𝑏⁄𝜕𝑧 𝜕𝑏 = 𝑐

⁄𝜕𝑐 𝜕𝑤" = 2 ∗ 𝑤"

𝑎 = 6

𝑏 = 7

𝑧 = 28

𝑐 = 4

𝑥 = 1

⁄𝜕𝑧 𝜕𝑏 = 4

⁄𝜕𝑏 𝜕𝑎 = 1

⁄𝜕𝑏 𝜕𝑤! = 1
⁄𝜕𝑐 𝜕𝑤" = 4

⁄𝜕𝑧 𝜕𝑐 = 7

⁄𝜕𝑎 𝜕𝑤! = 2 ∗ 𝑥

⁄𝜕𝑎 𝜕𝑤# = 2

𝜕ℒ
𝜕𝑤#

= −4
𝜕ℒ
𝜕𝑤!

= −8
𝜕ℒ
𝜕𝑤"

= −28

𝑦 = 38
ℒ = 10

ℒ = 𝑦 − 𝑧 ⁄𝜕ℒ 𝜕𝑧 = −1

⁄𝜕ℒ 𝜕𝑧 = −1

Backpropagation
Calculating the values
of partial derivatives.

52

Learning with Neural Networks

§ Design the network’s architecture

§ Loop until some exit criteria are met

- Sample a (mini)batch from training data 𝒟

- Execute forward pass: predict the output tensor of each given input tensor

- Calculate loss function of the (mini)batch

- Optimize the network to reduce loss

• Calculate the gradient of each parameter regarding the loss function
using the backpropagation algorithm

• Update parameters using their gradients

53

Gradient Descent algorithm – recap

§ A model with parameters 𝕎 at time step t → 𝕎(,), learning rate η,
and set of datapoints 𝒟

§ Loop for some epochs

- Compute gradient tensor 𝔾 of parameters 𝕎 averaged over
datapoints 𝒟:

𝔾 ←
1
𝒟
∇𝕎9

(𝒙,O)∈𝒟
ℒ(𝒙, 𝑦;𝕎)

- Update the parameters by taking steps in the opposite direction
of the gradient tensor multiplied by 𝜂:

𝕎(!P') ←𝕎(!) − 𝜂𝔾
- Reduce learning rate (annealing) if some criteria are met or

according to a scheduler

54

Batch

§ In (vanilla) Gradient Descent, first all data points are processed, and their
gradients are aggregated, and then a small parameter update is made

- Training can take very long time
- Training is not stochastic

§ Batch/Mini-batch
- A (small) set of data to be processed together
- Suitable for multi-processing capabilities of GPUs

§ Stochastic Gradient Descent
- In each step, we process a (mini-)batch of data, calculate their

gradients, and update parameters
- Typical setting for training deep learning models

55

(Mini-batch) Stochastic Gradient Descent algorithm

§ A model with parameters 𝕎 at time step t → 𝕎(,), learning rate η,
and set of datapoints 𝒟

§ Loop until some exit criteria are met

- e𝒟 is the set of datapoints in the minibatch
- Compute gradient tensor 𝔾 of parameters 𝕎 averaged over

batch datapoints e𝒟:

𝔾 ←
1
k𝒟
∇𝕎9

(𝒙,O)∈W𝒟
ℒ(𝒙, 𝑦;𝕎)

- Update the parameters by taking steps in the opposite direction
of the gradient tensor multiplied by 𝜂:

𝕎(!P') ←𝕎(!) − 𝜂𝔾
- Reduce learning rate (annealing) if some criteria are met or

according to a scheduler

56

Other gradient-based optimizations

§ Some limitations of the mentioned SGD algorithms
- Choosing learning rate is hard
- Choosing annealing method/rate is hard
- Same learning rate is applied to all parameters
- Can get trapped in non-optimal local minima and saddle points

§ Some other commonly used algorithms:
- Nestrov accelerated gradient
- Adagrad
- Adam

