344.175 VL: Natural Language Processing Word Embedding with Matrix Factorization

Navid Rekab-saz

Email: navid.rekabsaz@jku.at
Office hours: https://navid-officehours.youcanbook.me

Agenda

- Distributional semantics \& word embedding
- PMI+SVD
- GloVe

Agenda

- Distributional semantics \& word embedding
- PMI+SVD
- GloVe

Meaning \& Semantics

Meaning:
 What is meant by a word, text, concept, or action. (Oxford)
 The thing one intends to convey especially by language. (Merriam-Webster)

Semantics:

The branch of linguistics and logic concerned with meaning ... lexical semantics [is] concerned with the analysis of word meanings and relations between them. (Oxford)

Semantics with knowledge resources

Noun language has 6 senses

1. language, linguistic communication - a systematic means of communicating by the use of sounds or conventional symbols; "he taught foreign languages"; "the language introduced is standard throughout the text"; "the speed with which a program can be executed depends on the language in which it is written"
--1 is a kind of communication
--1 has particulars:
dead language; words; source language; object language, target language; sign language, signing; artificial language; metalanguage; native language; natural language, tongue; lingua franca, interlanguage, koine; string of words, word string, linguistic string; barrage, outpouring, onslaught; slanguage
2. speech, speech communication, spoken communication, spoken language, language, voice communication, oral communication - (language) communication by word of mouth; "his speech was garbled"; "he uttered harsh language"; "he recorded the spoken language of the streets"
--2 is a kind of auditory communication
--2 has particulars:
words; pronunciation, orthoepy; conversation; discussion, give-and-take, word; saying, expression, locution; non-standard speech; idiolect; monologue; spell, magic spell, charm; dictation; soliloquy, monologue
3. terminology, nomenclature, language - a system of words used in a particular discipline; "legal terminology"; "the language of sociology"

reduction, deflation, shrinkage, curtailment, condensation
--3 is a kind of word
$-{ }_{-3}$ has particulars: markup language; toponymy, toponomy

Noun elephant has 2 senses

1. elephant - five-toed pachyderm
$-_{1}$ is a kind of proboscidean, proboscidian
$-{ }^{-1}$ is a member of Elephantidae, family Elephantidae
--1 has particulars:
rogue elephant; Indian elephant, Elephas maximus; African elephant, Loxodonta africana; mammoth; gomphothere
2. elephant - the symbol of the Republican Party; introduced in cartoons by Thomas Nast in 1874 $-{ }_{-2}$ is a kind of emblem, allegory

Distributional Semantics

"You shall know a word by the company it keeps!"

J. R. Firth, A synopsis of
linguistic theory 1930-1955 (1957)

Distributional Semantics

"A word's meaning is given by the words that frequently appear close-by"

- The context of a word w is the set of words appear in the nearby of w (e.g., within a fixed-size window)
- The words in context are context-words
- We use many contexts of w to create a representation of w
- e.g., the meaning of banking
...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation to replace the hodgepodge...
...India has just given its banking system a shot in the arm...
One of the most successful ideas of modern statistical NLP!

arink

sacred

beer

ritual

Tesgüino

corn

fermented

The Tarahumara people gather every year during Easter week (semana santa) and drink large amounts of Tesgüino together while following rituals. According to the anthropologist Bill Merrill of the Smithsonian Institute, the sacred drink chases large souls from the persons who drink it, «and so when people get drunk that's why they act like children [...] because the souls that are controlling their actions are the little souls, like little children».

drink sacred beer
 ritual
 Tesgüino

corn

brew
Mexico

dark brown
bottle
malt

brew

lager

Bavaria

bar

drink
beer

Tesgüino
 Märzen

An algorithmic intuition:
Two words are related (semantically similar) when they have many common context-words

How to represent entities/tokens/information/knowledge?

Distributional Representation

- A word (token) is represented with a vector of d dimensions
" Each dimension can be seen as a "feature" of the entity (word/token)
- Dimensions and their values are not mutually exclusive
- Two units can be "active" at the same time
- Each dimension forms a distribution over possible values (domain \mathbb{R})
- Realizing a word vector can be seen as, for each dimension, selecting a value according to the its underlying distribution

Tesgüino

Word Embedding

Word Embedding Model

Words

- We use many contexts of words in the corpus to create vector representations of words
- When vector representations are dense, they are often called embedding ... e.g., word embedding

Word embeddings projected to a two-dimensional space

Word Embedding - Nearest neighbors

frog	book	asthma
frogs	books	bronchitis
toad	foreword	allergy
litoria	author	allergies
leptodactylidae	published	arthritis
rana	preface	diabetes

Word Embedding - Linear substructures

- Analogy task:
- man to woman is like king to ? (queen)

$$
\begin{gathered}
\boldsymbol{e}_{\text {king }}-\boldsymbol{e}_{\operatorname{man}}+\boldsymbol{e}_{\text {woman }}=\boldsymbol{e}^{*} \\
\boldsymbol{e}^{*} \approx \boldsymbol{e}_{\text {queen }}
\end{gathered}
$$

Word Embedding - Games of Thrones!

Word Embedding - Games of Thrones!

Word Embedding - Building Block of Modern NLP

Agenda

- Distributional semantics \& word embedding
- PMI+SVD
- GloVe

Word-Document Matrix - recap

- \mathbb{D} is a set of documents (plays of Shakespeare)

$$
\mathbb{D}=[d 1, d 2, \ldots, d M]
$$

- \mathbb{V} is the set of words (vocabularies) in dictionary

$$
\mathbb{V}=[v 1, v 2, \ldots, v N]
$$

- Words as rows and documents as columns
- Values: number of occurrences of words in documents
- Matrix size $N \times M$

	$d 1$	$d 2$	$d 3$	$d 4$
	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	1	8	15
soldier	2	2	12	36
fool	37	58	1	5
clown	6	117	0	0
$\quad \ldots$	\ldots	\ldots	\ldots	\ldots

Cosine

- Cosine is the normalized dot product of two vectors
- between -1 and +1

$$
\cos (\boldsymbol{x}, \boldsymbol{y})=\frac{\boldsymbol{x}}{\|\boldsymbol{x}\|_{2}} \cdot \frac{\boldsymbol{y}^{\mathrm{T}}}{\|\boldsymbol{y}\|_{2}}=\frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} y_{i}^{2}}}
$$

- $\boldsymbol{x}=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right] \boldsymbol{y}=\left[\begin{array}{lll}4 & 5 & 6\end{array}\right]$

$$
\cos (x, y)=\frac{1 * 4+1 * 5+0 * 6}{\sqrt{1^{2}+1^{2}+0^{2}} \sqrt{4^{2}+5^{2}+6^{2}}}=\frac{9}{\sim 12.4}
$$

Word-Document Matrix

	d1	d2	d3	d4
	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	1	8	15
soldier	2	2	12	36
fool	37	58	1	5
clown	6	117	0	0
...

- Similarity between two words:

$$
\operatorname{similarity}(\text { soldier, clown })=\cos \left(\boldsymbol{e}_{\text {soldier }}, \boldsymbol{e}_{\text {clown }}\right)
$$

Context

- Context can be
- Document
- Paragraph, tweet
- Window of (usually 2 to 10) context words on each side of the word
- Word-Context matrix
- Every context-word as a dimension

$$
\mathbb{C}=[c 1, c 2, \ldots, c L]
$$

- Usually, $\mathbb{C}=\mathbb{V}$ and therefore $L=N$
- Word-Context matrix is in size $N \times L$ or mostly $N \times N$

Word-Context Matrix

- Window context of 7 words
- Values are the number of co-occurrences of v and $c \rightarrow x_{v, c}$

sugar, a sliced lemon, a tablespoonful of their enjoyment. Cautiously she sampled her first well suited to programming on the digita for the purpose of gathering data an		apricot pineapple computer. information	preserve or jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy fro necessary for the study authorized in the			
	c1	c2	c3	c4	c5	c6
	aardvark	digital	data	fruit	result	sugar
$v 1$ apricot	0	0	1	3	0	2
$v 2$ pineapple	0	0	0	1	0	1
$v 3$ computer	0	2	4	0	1	0
$v 4$ information	0	4	3	0	2	0

Point Mutual Information (PMI)

- Problem with using raw co-occurrence statistics $\left(x_{v, c}\right)$ in wordcontext matrix
- Highly frequent words ("and", "the") co-occur with many words and gain high values, although they don't convey much information
- Point Mutual Information (PMI)
- Rooted in information theory
- A common measure of first-order co-occurrence used to create word-context matrix
- Defined as the joint probability of two events (random variables) divided by their marginal probabilities

$$
\operatorname{PMI}(A, B)=\log _{2} \frac{P(A, B)}{P(A) P(B)}
$$

Point Mutual Information (PMI)

- PMI of the occurrences of word v and context-word c

$$
\operatorname{PMI}(v, c)=\log _{2} \frac{P(v, c)}{P(v) P(c)}
$$

$P(v, c)$: probability of co-occurrence of v with c

$$
P(v, c)=\frac{x_{v, c}}{|\mathcal{D}|}
$$

$x_{v, c}$: number of times that v and c appear in the same context
$|\mathcal{D}|$: number of all co-occurrences in the corpus $\rightarrow|\mathcal{D}|=\sum_{i=1}^{N} \sum_{j=1}^{L} x_{i, j}$ $P(v)$: probability of co-occurrence of v with any context-word

$$
P(v)=\frac{\sum_{\check{c} \in \mathbb{C}} x_{v, \check{c}}}{|\mathcal{D}|}=\frac{X_{v}}{|\mathcal{D}|}
$$

$P(c)$: probability of co-occurrence of c with any word

$$
P(c)=\frac{\sum_{\check{v} \in \mathbb{V}} x_{\breve{v}, c}}{|\mathcal{D}|}=\frac{X_{c}}{|\mathcal{D}|}
$$

Point Mutual Information (PMI)

Word-context matrix with raw co-occurrences ($x_{v, c}$)

	$c 1$	$c 2$	$c 3$	$c 4$	$c 5$	$c 6$
	aardvark	digital	data	fruit	result	sugar
$v 1$ apricot	0	0	1	3	0	2
$v 2$ pineapple	0	0	0	2	0	1
$v 3$ computer	0	2	4	0	1	0
$v 4$ information	0	4	3	0	2	0

$\operatorname{PMI}(v=$ information, $c=$ data $)=$?
$P(v=$ information, $c=$ data $)=3 / 25=0.12$
$P(v=$ information $)=9 / 25=0.36$
$P(c=$ data $)=8 / 25=0.32$
$\operatorname{PMI}(v=$ information, $c=$ data $)=\log _{2} \frac{0.12}{0.36 \times 0.32}=0.058$

Point Mutual Information (PMI)

Word-context matrix with raw co-occurrences ($x_{v, c}$)

	$c 1$	$c 2$	$c 3$	$c 4$	$c 5$	$c 6$
$v 1$	apricot	0	0	1	3	0
$v 2$	pineapple	0	0	0	2	0
v	1					
$v 3$ computer	0	2	4	0	1	0
$v 4$ information	0	4	3	0	2	0

Word-context matrix with PMI

	$c 1$	$c 2$	$c 3$	$c 4$	$c 5$	$c 6$
	aardvark	digital	data	fruit	result	sugar
$v 1$	apricot	$-\infty$	$-\infty$	-0.94	1.32	$-\infty$
1.47						
$v 2$ pineapple	$-\infty$	$-\infty$	$-\infty$	1.73	$-\infty$	1.47
$v 3$ computer	$-\infty$	0.25	0.83	$-\infty$	0.25	$-\infty$
$v 4$	information	$-\infty$	0.88	0.05	$-\infty$	0.88
	$-\infty$					

Positive Point Mutual Information (PPMI)

- PPMI sets negative values of PMI to zero

$$
\operatorname{PPMI}(t, c)=\max (\operatorname{PMI}, 0)
$$

Word-context matrix with PMI

	$c 1$	$c 2$	$c 3$	$c 4$	$c 5$	$c 6$
	aardvark	digital	data	fruit	result	sugar
$v 1$ apricot	$-\infty$	$-\infty$	-0.94	1.32	$-\infty$	1.47
$v 2$ pineapple	$-\infty$	$-\infty$	$-\infty$	1.73	$-\infty$	1.47
$v 3$ computer	$-\infty$	0.25	0.83	$-\infty$	0.25	$-\infty$
$v 4$ information	$-\infty$	0.88	0.05	$-\infty$	0.88	$-\infty$

Word-context matrix with PPMI

	$c 1$	$c 2$	$c 3$	$c 4$	$c 5$	$c 6$
	aardvark	digital	data	fruit	result	sugar
$v 1$ apricot	0	0	0	1.32	0	1.47
$v 2$ pineapple	0	0	0	1.73	0	1.47
$v 3$ computer	0	0.25	0.83	0	0.25	0
$v 4$ information	$\mathbf{0}$	0.88	0.05	0	0.88	0

Why low-dimensional vectors? - Recap

- Easier to store and load
- More efficient when used as features in ML models
- Better generalization due to the reduction of noise in data
- Able to capture higher-order relations:
- Synonyms like car and automobile might be merged into the same dimensions

- Polysemies like bank (financial institution) and bank (bank of river) might be separated into different dimensions

Singular Value Decomposition - Recap

- An $N \times M$ matrix \boldsymbol{X} can be factorized to three matrices:

$$
\boldsymbol{X}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}}
$$

- \boldsymbol{U} left singular vectors is an $N \times M$ unitary matrix
- Σ is an $M \times M$ diagonal matrix, diagonal entries
- are singular values,
- show the importance of corresponding M dimensions in X
- are all positive and sorted from large to small values
- $\boldsymbol{V}^{\mathrm{T}}$ right singular vectors is an $M \times M$ unitary matrix

Singular Value Decomposition - Recap

Applying SVD to PPMI word-context matrix

- Step 1: create a PPMI matrix of the size $N \times N$,
- Apply SVD
context-words

Applying SVD to PPMI word-context matrix

- Step 2: keep only top d singular values in Σ and set the rest to zero
- Truncate the \boldsymbol{U} and $\boldsymbol{V}^{\mathrm{T}}$ matrices, resulting in \boldsymbol{U}_{k} and $\boldsymbol{V}_{\boldsymbol{k}}^{\mathrm{T}}$
- Rows in \boldsymbol{U}_{k} are the new low-dimensional word vectors

Applying SVD to Term-Context Matrix

- \boldsymbol{U}_{k} is the matrix of dense low-dimensional word vectors

Summary - PPMI+SVD

- PPMI captures first-order co-occurrences
- PPMI word-context matrix provides high-dimensional word representations. The matrix is ...
- highly sparse
- very big, and barely fits to memory. It usually requires sparse data structures
- As shown empirically, PMI overly favors low-frequency/rare words
- By applying SVD to PPMI word-context matrix, we achieve dense low-dimensional word embedding
- Appropriate for calculating word-to-word semantic similarity (using cosine)
- Computing SVD is time consuming. Usually approximations of SVD are used

Agenda

- Distributional semantics \& word embedding
- PMI+SVD
- GloVe

GloVe: Global Vectors for Word Representations

- A well-known word embedding model
- Pre-trained word embedding are typically used in various tasks
- Similar to PPMI+SVD, GloVe ...
- starts from a high-dimensional sparse word-context co-occurrence matrix
- and then applies matrix factorization to build low-dimensional word embeddings

Word-Context matrix - from PMI to GloVe

- Deriving GloVe from PMI ...
- Recall:

$$
\begin{gathered}
\operatorname{PMI}(v, c)=\log _{2} \frac{P(v, c)}{P(v) P(c)} \approx \log \frac{P(v, c)}{P(v) P(c)} \\
=\log \frac{x_{v, c} /|\mathcal{D}|}{X_{v} /|\mathcal{D}|}=\log \frac{x_{v, c}|\mathcal{D}|}{X_{v} X_{c}} \\
=\log x_{v, c}-\log X_{v}-\log X_{c}+\log |\mathcal{D}|
\end{gathered}
$$

- $\log |\mathcal{D}|$ is a constant and can be removed:

$$
\approx \log x_{v, c}-\log X_{v}-\log X_{c}
$$

Word-Context matrix - from PMI to GloVe

- Deriving GloVe from PMI ...

$$
\operatorname{PMI}(v, c) \approx \log x_{v, c}-\log X_{v}-\log X_{c}
$$

- $1^{\text {st }}$ difference: replace $\log X_{v}$ and $\log X_{c}$ with learning parameters a_{v} and b_{c}, respectively
- GloVe therefore uses:

$$
\log x_{v, c}-a_{v}-b_{c}
$$

- a_{v} and b_{c} are bias terms
- In fact, a_{v} and b_{c} act as a "normalization" to log-co-occurrence, where their degrees are learned
- Vector \boldsymbol{a} contain the bias values of all words (like a_{v})
- Vector \boldsymbol{b} contain the bias values of all context-words (like b_{c})

Matrix factorization

GloVe word-context matrix:
$2^{\text {nd }}$ difference: matrix factorization

Matrix factorization

Formal definition:

We factorize GloVe co-occurrence matrix by defining two learnable parameter matrices of size $N \times d$:

- E (word embeddings)
- \boldsymbol{U} (context-word embeddings)
such that for every (v, c) pair:

$$
\boldsymbol{e}_{v} \boldsymbol{u}_{c}^{\mathrm{T}} \approx \log x_{v, c}-a_{v}-b_{c}
$$

$\boldsymbol{E}, \boldsymbol{U}, \boldsymbol{a}$, and \boldsymbol{b} are (learnable) model parameters

Loss function

- To find optimum values for parameters, GloVe uses least squares loss function:*

$$
\mathcal{L}=\sum_{v \in \mathbb{V}, c \in \mathbb{C}}\left(\boldsymbol{e}_{v} \boldsymbol{u}_{c}^{\mathrm{T}}+a_{v}+b_{c}-\log x_{v, c}\right)^{2}
$$

- Using the loss function, model parameters are optimized with Alternating Least Squares (ALS)
- More about ALS is available here:

http://stanford.edu/~rezab/classes/cme323/S15/notes/lec14.pdf

* GloVe includes a function f to the loss, which weighs down the rare pairs and saturates on highly frequent ones. The loss function in GloVe is weighted least squares (details in paper):

$$
\mathcal{L}=\sum_{v \in \mathbb{V}, c \in \mathbb{C}} f\left(x_{v, c}\right)\left(\boldsymbol{e}_{v} \boldsymbol{u}_{c}^{\mathrm{T}}+a_{v}+b_{c}-\log x_{v, c}\right)^{2}
$$

GloVe - Summary

- GloVe
- first accumulates co-occurrence numbers
- then defines two embedding matrices and two bias vectors, and optimize their values by approximating the logarithm of co-occurrence statistics
- Final word embeddings
- can be the word vectors \boldsymbol{E}
- but also can be the sum of the word and context-word vectors: $\boldsymbol{E}+\boldsymbol{U}^{\mathrm{T}}$
- This method is used in GloVe
- Characteristics
- Fast training (no need for SVD!) \rightarrow repeat SGD till loss converges
- Scalable to large corpora
- Good performance even with small corpus and small vectors

