Winter semester 2022/23

344.175 VL: Natural Language Processing Word Embedding with Matrix Factorization

Navid Rekab-saz

Email: <u>navid.rekabsaz@jku.at</u> Office hours: <u>https://navid-officehours.youcanbook.me</u>

Institute of Computational Perception

- Distributional semantics & word embedding
- PMI+SVD
- GloVe

- Distributional semantics & word embedding
- PMI+SVD
- GloVe

Meaning & Semantics

Meaning:

What is meant by a word, text, concept, or action. (Oxford) The thing one intends to convey especially by language. (Merriam-Webster)

Semantics:

The branch of linguistics and logic concerned with meaning ... *lexical semantics* [is] concerned with the analysis of word meanings and relations between them. (Oxford)

Semantics with knowledge resources

Noun language has 6 senses

- language, linguistic communication a systematic means of communicating by the use of sounds or conventional symbols; "he taught foreign languages"; "the language introduced is standard throughout the text"; "the speed with which a program can be executed depends on the language in which it is written"
 - --1 is a kind of communication
 - --1 has particulars:

dead language; words; <u>source language</u>; object language, target language; sign language, signing; artificial language; metalanguage; native language; natural language, tongue; lingua franca, interlanguage, koine; string of words, word string, linguistic string; barrage, outpouring, onslaught; slanguage

- speech, speech communication, spoken communication, spoken language, language, voice communication, oral communication - (language) communication by word of mouth; "his speech was garbled"; "he uttered harsh language"; "he recorded the spoken language of the streets"
 - --2 is a kind of auditory communication
 - --2 has particulars:

words; pronunciation, orthoepy; conversation; discussion, give-and-take, word; saying, expression, locution; non-standard speech; idiolect; monologue; spell, magic spell, charm; dictation; soliloquy, monologue

- 3. terminology, nomenclature, language a system of words used in a particular discipline; "legal terminology"; "the language of sociology"
 - --3 is a kind of word
 - --3 has particulars: markup language; toponymy, toponomy

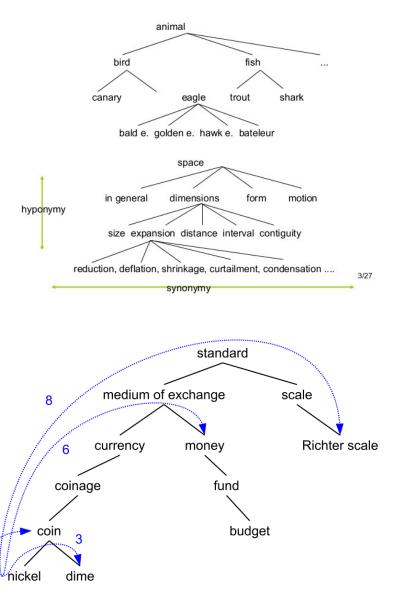
Noun elephant has 2 senses

- 1. elephant five-toed pachyderm
 - --1 is a kind of proboscidean, proboscidian
 - --1 is a member of Elephantidae, family Elephantidae
 - --1 has particulars:

rogue elephant; Indian elephant, Elephas maximus; African elephant, Loxodonta africana; mammoth; gomphothere

2

2. elephant - the symbol of the Republican Party; introduced in cartoons by Thomas Nast in 1874 --2 is a kind of emblem, allegory



Read more here: https://web.stanford.edu/~jurafsky/slp3/C.pdf

https://wordnet.princeton.edu

http://wordnet-online.freedicts.com/definition?word=language

https://www.slideshare.net/AhmedAbdElwasaa/wordnet-a-database-of-lexical-relations

Distributional Semantics

"You shall know a word by the company it keeps!"

J. R. Firth, A synopsis of linguistic theory 1930–1955 (1957)

Distributional Semantics

"A word's meaning is given by the words that frequently appear close-by"

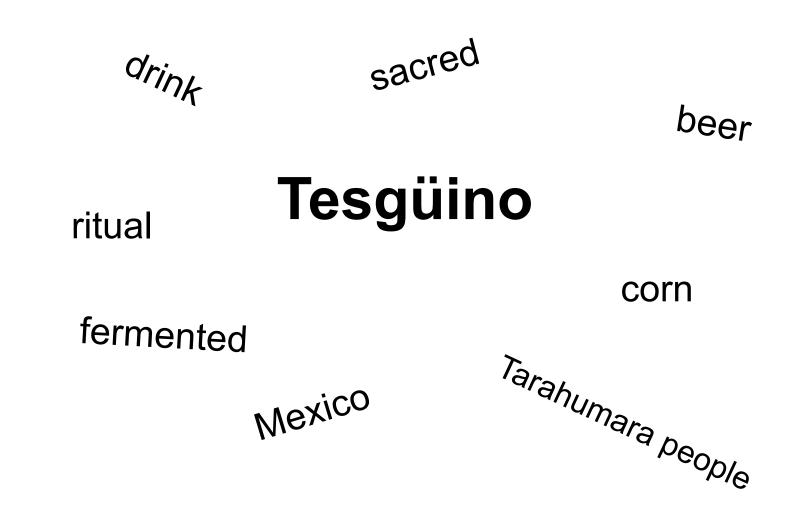
- The context of a word w is the set of words appear in the nearby of w (e.g., within a fixed-size window)
 - The words in context are context-words
- We use many contexts of *w* to create a representation of *w*
 - e.g., the meaning of *banking*

...government debt problems turning into **banking** crises as happened in 2009...

...saying that Europe needs unified **banking** regulation to replace the hodgepodge...

...India has just given its **banking** system a shot in the arm...

One of the most successful ideas of modern statistical NLP!



The Tarahumara people gather every year during Easter week (*semana santa*) and drink large amounts of Tesgüino together while following rituals. According to the anthropologist <u>Bill Merrill</u> of the Smithsonian Institute, the sacred drink chases large souls from the persons who drink it, «and so when people get drunk that's why they act like children [...] because the souls that are controlling their actions are the little souls, like little children». https://en.wikipedia.org/wiki/Tesgüino

Nida[1975]

beer

Tesgüino $\leftarrow \rightarrow$ Märzen

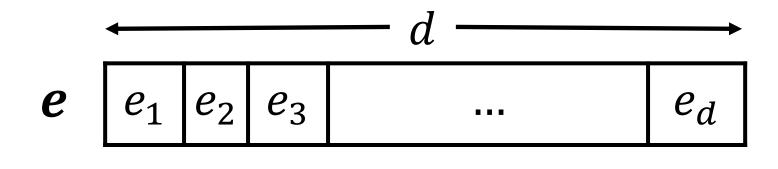
An algorithmic intuition:

Two words are related (semantically similar) when they have many common context-words

How to represent entities/tokens/information/knowledge?

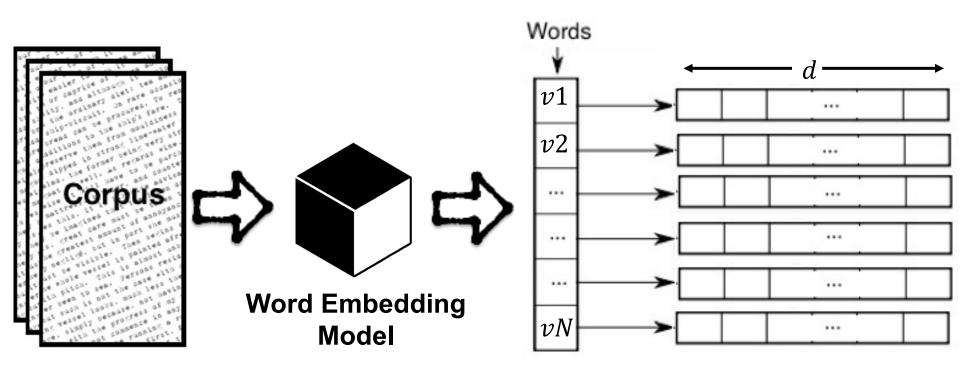
Distributional Representation

- A word (token) is represented with a vector of *d* dimensions
- Each dimension can be seen as a "feature" of the entity (word/token)
- Dimensions and their values are not mutually exclusive
 - Two units can be "active" at the same time
- Each dimension forms a distribution over possible values (domain \mathbb{R})
 - Realizing a word vector can be seen as, for each dimension, selecting a value according to the its underlying distribution

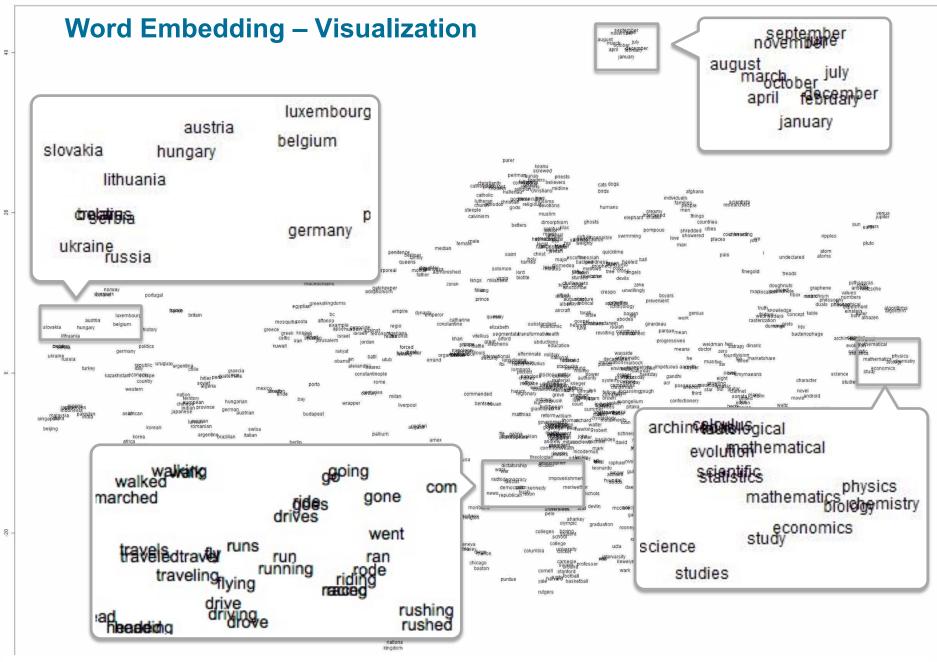


Tesgüino	0.323	0.432	-0.214	 0.501

Word Embedding



- We use many contexts of words in the corpus to create vector representations of words
- When vector representations are dense, they are often called embedding ... e.g., word embedding



Word embeddings projected to a two-dimensional space

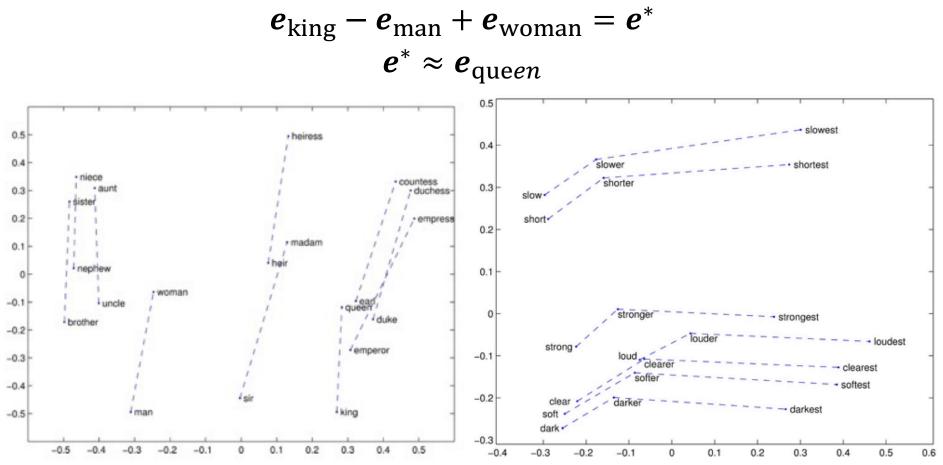
×[.2]

Word Embedding – Nearest neighbors

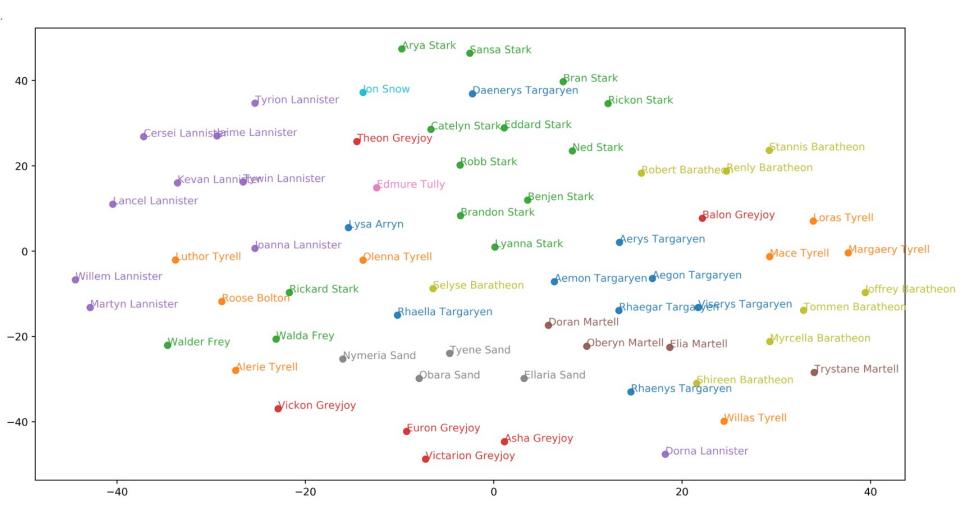
frog		book	asthma
frogs		books	bronchitis
toad		foreword	allergy
litoria		author	allergies
leptodactylidae		published	arthritis
rana	Store -	preface	diabetes

Word Embedding – Linear substructures

- man to woman is like king to ? (queen)

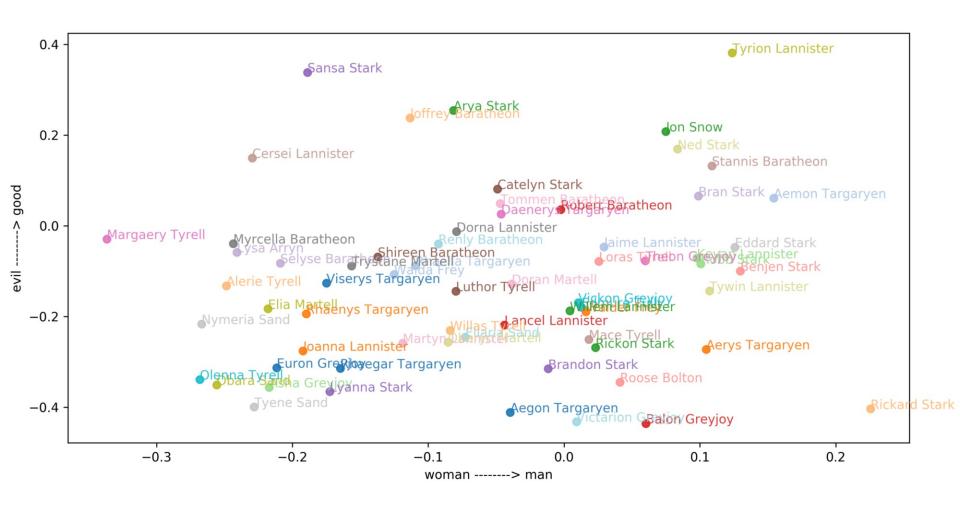


Word Embedding – Games of Thrones!



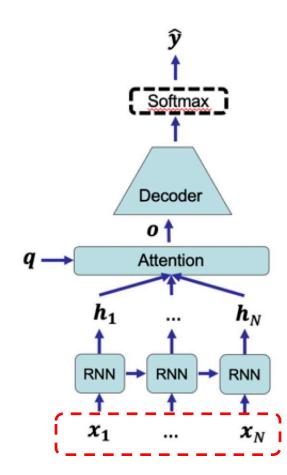
https://towardsdatascience.com/game-of-thrones-word-embeddings-does-r-l-j-part-2-30290b1c0b4b

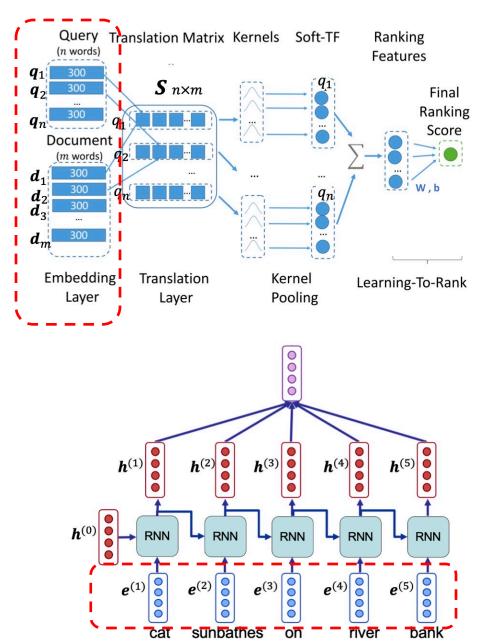
Word Embedding – Games of Thrones!



https://towardsdatascience.com/game-of-thrones-word-embeddings-does-r-l-j-part-2-30290b1c0b4b

Word Embedding – Building Block of Modern NLP





- Distributional semantics & word embedding
- PMI+SVD
- GloVe

Word-Document Matrix – recap

- \mathbb{D} is a set of documents (plays of Shakespeare) $\mathbb{D} = [d1, d2, ..., dM]$
- \mathbb{V} is the set of words (vocabularies) in dictionary $\mathbb{V} = [v1, v2, ..., vN]$
- Words as rows and documents as columns
- Values: number of occurrences of words in documents
- Matrix size $N \times M$

	d1	<i>d</i> 2	<i>d</i> 3	<i>d</i> 4
	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	1	8	15
soldier	2	2	12	36
fool	37	58	1	5
clown	6	117	0	0

Cosine

- Cosine is the normalized dot product of two vectors
 - between -1 and +1

$$\cos(\boldsymbol{x}, \boldsymbol{y}) = \frac{\boldsymbol{x}}{\|\boldsymbol{x}\|_2} \cdot \frac{\boldsymbol{y}^{\mathrm{T}}}{\|\boldsymbol{y}\|_2} = \frac{\sum_i x_i y_i}{\sqrt{\sum_i x_i^2} \sqrt{\sum_i y_i^2}}$$

• $x = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} y = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$

$$\cos(\mathbf{x}, \mathbf{y}) = \frac{1 * 4 + 1 * 5 + 0 * 6}{\sqrt{1^2 + 1^2 + 0^2}\sqrt{4^2 + 5^2 + 6^2}} = \frac{9}{\sim 12.4}$$

Word-Document Matrix

	d1	<i>d</i> 2	<i>d</i> 3	d4
	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	1	8	15
soldier	2	2	12	36
fool	37	58	1	5
clown	6	117	0	0

Similarity between two words:

similarity(soldier, clown) = $cos(e_{soldier}, e_{clown})$

Context

- Context can be
 - Document
 - Paragraph, tweet
 - Window of (usually 2 to 10) context words on each side of the word
- Word-Context matrix
 - Every context-word as a dimension

 $\mathbb{C} = [c1, c2, \dots, cL]$

- Usually, $\mathbb{C} = \mathbb{V}$ and therefore L = N
- Word-Context matrix is in size $N \times L$ or mostly $N \times N$

Word-Context Matrix

Window context of 7 words

- Values are the number of co-occurrences of v and $c \rightarrow x_{v,c}$

sugar, a sliced lemon, a tablespoonful of
their enjoyment. Cautiously she sampled her first
well suited to programming on the digital
for the purpose of gathering data andapricot
pineapple
computer.preserve or jam, a pinch each of,
and another fruit whose taste she likened
In finding the optimal R-stage policy from
necessary for the study authorized in the

	<i>c</i> 1	<i>c</i> 2	<i>c</i> 3	<i>c</i> 4	<i>c</i> 5	<i>c</i> 6
	aardvark	digital	data	fruit	result	sugar
v1 apricot	0	0	1	3	0	2
v2 pineapple	0	0	0	1	0	1
v3 computer	0	2	4	0	1	0
v4 information	0	4	3	0	2	0

- Problem with using raw co-occurrence statistics (x_{v,c}) in wordcontext matrix
 - Highly frequent words ("*and*", "*the*") co-occur with many words and gain high values, although they don't convey much information
- Point Mutual Information (PMI)
 - Rooted in information theory
 - A common measure of first-order co-occurrence used to create word-context matrix
 - Defined as the joint probability of two events (random variables) divided by their marginal probabilities

$$PMI(A,B) = \log_2 \frac{P(A,B)}{P(A)P(B)}$$

• PMI of the occurrences of word *v* and context-word *c*

$$PMI(v,c) = \log_2 \frac{P(v,c)}{P(v)P(c)}$$

P(v, c): probability of co-occurrence of v with c

$$P(v,c) = \frac{x_{v,c}}{|\mathcal{D}|}$$

 $x_{v,c}$: number of times that v and c appear in the same context $|\mathcal{D}|$: number of all co-occurrences in the corpus $\rightarrow |\mathcal{D}| = \sum_{i=1}^{N} \sum_{j=1}^{L} x_{i,j}$ P(v): probability of co-occurrence of v with any context-word

$$P(v) = \frac{\sum_{\check{c} \in \mathbb{C}} x_{v,\check{c}}}{|\mathcal{D}|} = \frac{X_v}{|\mathcal{D}|}$$

P(c): probability of co-occurrence of c with any word

$$P(c) = \frac{\sum_{\breve{v} \in \mathbb{V}} x_{\breve{v},c}}{|\mathcal{D}|} = \frac{X_c}{|\mathcal{D}|}$$

Word-context matrix with raw co-occurrences $(x_{\nu,c})$

	<i>c</i> 1	<i>c</i> 2	<i>c</i> 3	<i>c</i> 4	<i>c</i> 5	<i>c</i> 6
	aardvark	digital	data	fruit	result	sugar
v1 apricot	0	0	1	3	0	2
v2 pineapple	0	0	0	2	0	1
v3 computer	0	2	4	0	1	0
v4 information	0	4	3	0	2	0

PMI(
$$v = information, c = data$$
) =?
 $P(v = information, c = data) = \frac{3}{25} = 0.12$
 $P(v = information) = \frac{9}{25} = 0.36$
 $P(c = data) = \frac{8}{25} = 0.32$
PMI($v = information, c = data$) = $\log_2 \frac{0.12}{0.36 \times 0.32} = 0.058$

Word-context matrix with raw co-occurrences $(x_{v,c})$

	<i>c</i> 1	<i>c</i> 2	<i>c</i> 3	<i>c</i> 4	<i>c</i> 5	<i>c</i> 6
	aardvark	digital	data	fruit	result	sugar
v1 apricot	0	0	1	3	0	2
v2 pineapple	0	0	0	2	0	1
v3 computer	0	2	4	0	1	0
v4 information	0	4	3	0	2	0

Word-context matrix with PMI

	<i>c</i> 1	<i>c</i> 2	<i>c</i> 3	<i>c</i> 4	<i>c</i> 5	<i>c</i> 6
	aardvark	digital	data	fruit	result	sugar
v1 apricot	$-\infty$	$-\infty$	-0.94	1.32	$-\infty$	1.47
v2 pineapple	$-\infty$	$-\infty$	$-\infty$	1.73	$-\infty$	1.47
v3 computer	$-\infty$	0.25	0.83	$-\infty$	0.25	$-\infty$
v4 information	$-\infty$	0.88	0.05	$-\infty$	0.88	$-\infty$

Positive Point Mutual Information (PPMI)

PPMI sets negative values of PMI to zero

PPMI(t,c) = max(PMI,0)

Word-context matrix with PMI

	<i>c</i> 1	<i>c</i> 2	<i>c</i> 3	<i>c</i> 4	<i>c</i> 5	<i>c</i> 6
	aardvark	digital	data	fruit	result	sugar
v1 apricot	$-\infty$	$-\infty$	-0.94	1.32	$-\infty$	1.47
v2 pineapple	$-\infty$	$-\infty$	$-\infty$	1.73	$-\infty$	1.47
v3 computer	$-\infty$	0.25	0.83	$-\infty$	0.25	$-\infty$
v4 information	$-\infty$	0.88	0.05	$-\infty$	0.88	$-\infty$

Word-context matrix with PPMI

	<i>c</i> 1	<i>c</i> 2	<i>c</i> 3	<i>c</i> 4	<i>c</i> 5	<i>c</i> 6
	aardvark	digital	data	fruit	result	sugar
v1 apricot	0	0	0	1.32	0	1.47
v2 pineapple	0	0	0	1.73	0	1.47
v3 computer	0	0.25	0.83	0	0.25	0
v4 information	0	0.88	0.05	0	0.88	0

Why low-dimensional vectors? – Recap

- Easier to store and load
- More efficient when used as features in ML models
- Better generalization due to the reduction of noise in data
- Able to capture higher-order relations:
 - <u>Synonyms</u> like *car* and *automobile* might be merged into the same dimensions

- <u>Polysemies</u> like *bank (financial institution)* and *bank (bank of river)* might be separated into different dimensions

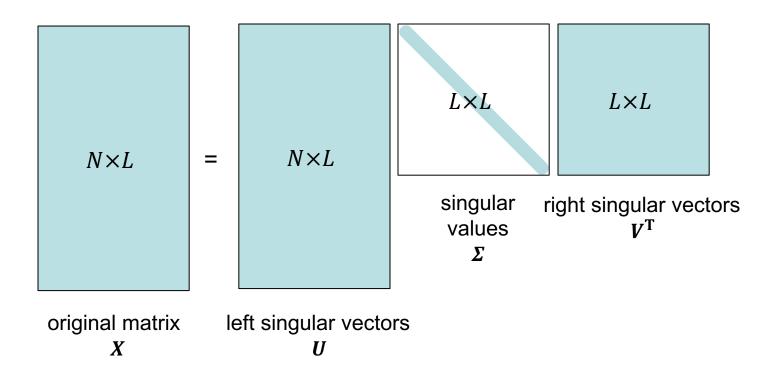
Singular Value Decomposition – Recap

• An $N \times M$ matrix X can be factorized to three matrices:

$X = U \Sigma V^{\mathrm{T}}$

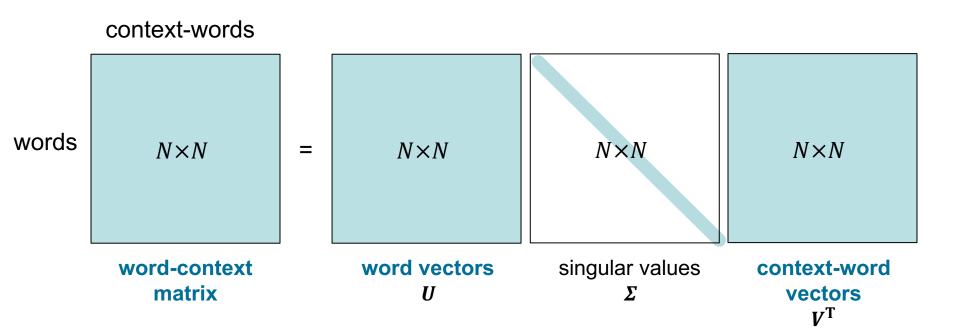
- *U* left singular vectors is an *N*×*M* unitary matrix
- Σ is an $M \times M$ diagonal matrix, diagonal entries
 - are singular values,
 - show the importance of corresponding *M* dimensions in *X*
 - are all positive and sorted from large to small values
- V^{T} right singular vectors is an $M \times M$ unitary matrix

Singular Value Decomposition – Recap



Applying SVD to PPMI word-context matrix

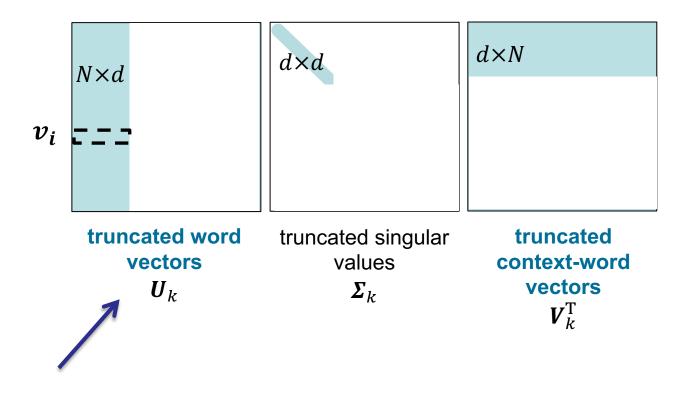
- Step 1: create a PPMI matrix of the size $N \times N$,
- Apply SVD



Applying SVD to PPMI word-context matrix

- Step 2: keep only top d singular values in Σ and set the rest to zero
- Truncate the **U** and V^{T} matrices, resulting in U_{k} and V_{k}^{T}
- Rows in U_k are the new low-dimensional word vectors

Applying SVD to Term-Context Matrix



U_k is the matrix of dense low-dimensional word vectors

Summary – PPMI+SVD

- PPMI captures first-order co-occurrences
- PPMI word-context matrix provides high-dimensional word representations. The matrix is ...
 - highly sparse
 - very big, and barely fits to memory. It usually requires sparse data structures
- As shown empirically, PMI overly favors low-frequency/rare words
- By applying SVD to PPMI word-context matrix, we achieve dense low-dimensional word embedding
 - Appropriate for calculating word-to-word semantic similarity (using cosine)
 - Computing SVD is time consuming. Usually approximations of SVD are used

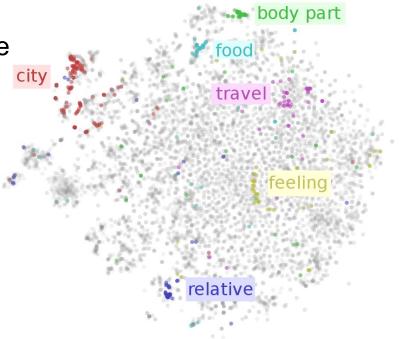
- Distributional semantics & word embedding
- PMI+SVD
- GloVe

Resource used in some slides: <u>http://web.stanford.edu/class/cs224n/slides/cs224n-2020-lecture02-wordvecs2.pdf</u>

GloVe: Global Vectors for Word Representations

- A well-known word embedding model
 - Pre-trained word embedding are typically used in various tasks

- Similar to PPMI+SVD, GloVe ...
 - starts from a high-dimensional sparse word-context co-occurrence matrix
 - and then applies matrix factorization to build low-dimensional word embeddings



Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. "Glove: Global vectors for word representation." *Proceedings of the conference on empirical methods in natural language processing (EMNLP)*. 2014. Picture: <u>https://ruder.io/word-embeddings-1/</u>

Word-Context matrix – from PMI to GloVe

- Deriving GloVe from PMI ...
- Recall:

$$PMI(v,c) = \log_2 \frac{P(v,c)}{P(v)P(c)} \approx \log \frac{P(v,c)}{P(v)P(c)}$$
$$= \log \frac{\frac{x_{v,c}}{|\mathcal{D}|}}{\frac{X_v}{|\mathcal{D}|} \frac{X_c}{|\mathcal{D}|}} = \log \frac{\frac{x_{v,c}}{|\mathcal{D}|}}{\frac{X_v X_c}{X_v X_c}}$$
$$= \log x_{v,c} - \log X_v - \log X_c + \log |\mathcal{D}|$$

• $\log |\mathcal{D}|$ is a constant and can be removed:

$$\approx \log x_{v,c} - \log X_v - \log X_c$$

Word-Context matrix – from PMI to GloVe

Deriving GloVe from PMI ...

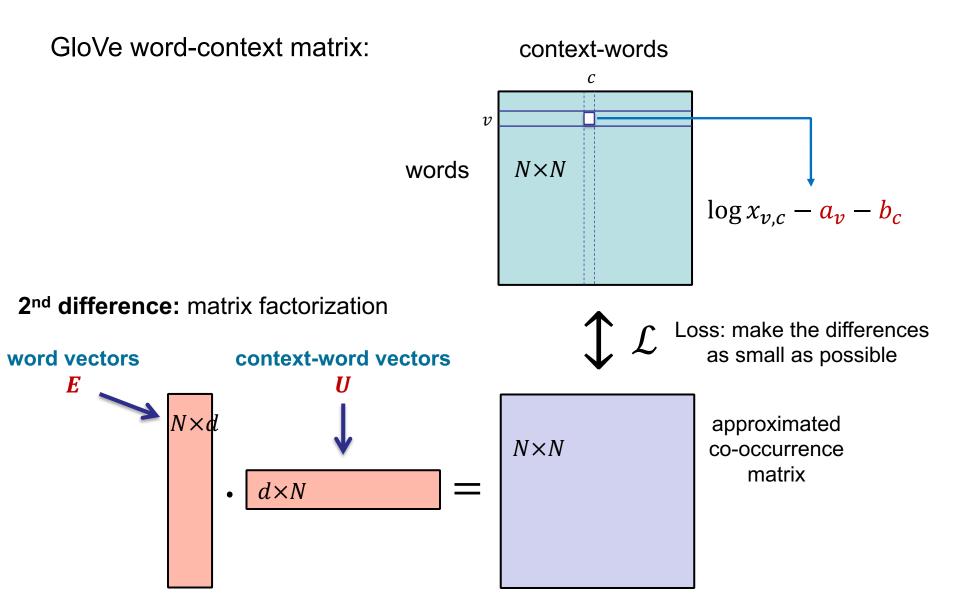
 $PMI(v,c) \approx \log x_{v,c} - \log X_v - \log X_c$

- 1st difference: replace $\log X_v$ and $\log X_c$ with learning parameters a_v and b_c , respectively
- GloVe therefore uses:

$$\log x_{v,c} - a_v - b_c$$

- a_v and b_c are bias terms
- In fact, a_v and b_c act as a "normalization" to log-co-occurrence, where their degrees are learned
- Vector **a** contain the bias values of all words (like a_v)
- Vector **b** contain the bias values of all context-words (like b_c)

Matrix factorization



Matrix factorization

Formal definition:

We factorize GloVe co-occurrence matrix by defining two learnable parameter matrices of size $N \times d$:

- **E** (word embeddings)
- **U** (context-word embeddings)

such that for every (v, c) pair:

$$\boldsymbol{e}_{\boldsymbol{v}}\boldsymbol{u}_{\boldsymbol{c}}^{\mathrm{T}} \approx \log x_{\boldsymbol{v},\boldsymbol{c}} - \boldsymbol{a}_{\boldsymbol{v}} - \boldsymbol{b}_{\boldsymbol{c}}$$

E, **U**, **a**, and **b** are (learnable) model parameters

Loss function

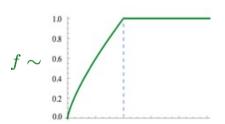
 To find optimum values for parameters, GloVe uses least squares loss function:*

$$\mathcal{L} = \sum_{v \in \mathbb{V}, c \in \mathbb{C}} (\boldsymbol{e}_{v} \boldsymbol{u}_{c}^{\mathrm{T}} + a_{v} + b_{c} - \log x_{v,c})^{2}$$

- Using the loss function, model parameters are optimized with Alternating Least Squares (ALS)
 - More about ALS is available here: <u>http://stanford.edu/~rezab/classes/cme323/S15/notes/lec14.pdf</u>

* GloVe includes a function f to the loss, which weighs down the rare pairs and saturates on highly frequent ones. The loss function in GloVe is weighted least squares (details in paper):

$$\mathcal{L} = \sum_{v \in \mathbb{V}, c \in \mathbb{C}} f(x_{v,c}) (\boldsymbol{e}_v \boldsymbol{u}_c^{\mathrm{T}} + a_v + b_c - \log x_{v,c})^2$$



GloVe – Summary

- GloVe
 - first accumulates co-occurrence numbers
 - then defines two embedding matrices and two bias vectors, and optimize their values by approximating the logarithm of co-occurrence statistics
- Final word embeddings
 - can be the word vectors E
 - but also can be the sum of the word and context-word vectors: $E + U^{T}$
 - This method is used in GloVe
- Characteristics
 - Fast training (no need for SVD!) \rightarrow repeat SGD till loss converges
 - Scalable to large corpora
 - Good performance even with small corpus and small vectors