Agenda

- Brief Intro to Deep Learning
 - Neural Networks
- Word Representation Learning
 - Neural word representation
 - word2vec with Negative Sampling
 - Bias in word representation learning

---Break----

- Recurrent Neural Networks
- Attention Networks
- Document Classification with DL

Recurrent Neural Networks

- Encodes/Embeds a sequence of entities (vectors) such as ...
 - Sequence of word vectors
 - Time series
- ... to a final composed vector as well as intermediary vectors on each time step
- The output is a function of input and the output of the previous time step
- Output \vec{h}_t is also called hidden state
- With hidden state \vec{h} , the network access to a sort of memory from previous entities

RNN - unfolded

Types and Bidirectional

- Common types of RNN
 - Standard (Elman) RNN
 - Gated Recurrent Unit (GRU)
 - Long Short-Term Memory (LSTM)

Bidirectional RNN

- Reading the sequence from
 - Beginning to end \vec{h}_1 to \vec{h}_n
 - End to beginning \overleftarrow{h}_n to \overleftarrow{h}_1
- Output at time step t is the concatenation of two hidden states \vec{h}_t and \overleftarrow{h}_{n-t}

Standard RNN

General form of the RNN function

$$\vec{h}_t = RNN(\vec{x}_t, \vec{h}_{t-1})$$

• First projects input \vec{x}_t with parameter matrix W_{ih} , and previous hidden state \vec{h}_{t-1} with parameter matrix W_{hh} , and then applies a non-linearity function on their sum:

$$\vec{h}_{t} = \tanh(\vec{x}_{t} \cdot W_{ih} + \vec{h}_{t-1} \cdot W_{hh}) \qquad \vec{h}_{t}$$

$$\Rightarrow \text{ Parameters are shown in red}$$

$$\Rightarrow \text{ For simplicity biases are removed from the formulas} \qquad \vec{x}_{t}$$

RNNs with Gates

- Two problems of Standard RNN:
 - Exploding gradient: approached with gradient clipping
 - Vanishing gradient: approached with gated RNNs such as GRU and LSTM by learning to "forget" the some parts of the memory

Gate Vector

- Commonly, a vector with values between 0 and 1, used for elementwise multiplication to an entity vector \vec{v} $\vec{g} \odot \vec{v}$
- Acts as a gate on information flow of the entity vector

Gated Recurrent Unit (GRU)

- Calculate reset gate from input \vec{x}_t and previous hidden state \vec{h}_{t-1} $\vec{r}_t = \sigma(\vec{x}_t \cdot W_{ir} + \vec{h}_{t-1} \cdot W_{hr})$
- Calculate novel information vector \vec{n}_t from input \vec{x}_t and a "forgotten" part of previous hidden state \vec{h}_{t-1}

$$\vec{n}_t = tanh(\vec{x}_t \cdot W_{ih} + \vec{r}_t \odot (\vec{h}_{t-1} \cdot W_{hh}))$$

- Calculate update gate from input \vec{x}_t and previous hidden state \vec{h}_{t-1} $\vec{z}_t = \sigma(\vec{x}_t \cdot W_{iz} + \vec{h}_{t-1} \cdot W_{hz})$
- Finally output is composed of the novel information \vec{n}_t and previous hidden state \vec{h}_{t-1} , decided by update gate $\vec{h}_t = (1 \vec{z}_t) \odot \vec{n}_t + \vec{z}_t \odot \vec{h}_{t-1}$

Agenda

- Brief Intro to Deep Learning
 - Neural Networks
- Word Representation Learning
 - Neural word representation
 - word2vec with Negative Sampling
 - Bias in word representation learning

---Break----

- Recurrent Neural Networks
- Attention Networks
- Document Classification with DL

Attention Networks

- Encodes/Embeds a set of vectors to a composed vector
- Given a query vector \$\vec{q}\$ and a matrix of values \$V\$, an attention network "looks up" the query in the values, and produce output vector \$\vec{o}\$
- General form of an attention network as a function

 \vec{q}

ATT

$$\vec{o} = ATT(\vec{q}, V)$$

> In general, query is also a matrix. Here it is assumed as a vector for simplicity

Attention Networks - details

• Given the query, an attention network learns to assign some amount of attention α_i on each value vector \vec{v}_i using the attention function f

$$\alpha_i = f(\vec{q}, \vec{v}_i)$$

Method 1 - Scaled Dot-Product Attention

First non-normalized attention a
i is calculated by a simple dot product

$$\tilde{a}_i = \frac{\vec{q} \cdot \vec{v}_i}{\sqrt{d}}$$

- where *d* is the dimension of vectors
- Attentions are then normalized with softmax

$$\alpha_i = softmax(\vec{\tilde{a}})_i$$

As before, output is the weighted sum

$$\vec{o} = \sum_{i=1}^{n} \alpha_i . \vec{v_i}$$

n

Method 2 - Multi-Layer Perceptron Attention

First non-normalized attention a
i is calculated by a neural network

$$\tilde{a}_i = \vec{u} \cdot tanh(\vec{q} \cdot W_1 + \vec{v}_i \cdot W_2)$$

As before, attentions are normalized with *softmax* $\alpha_i = softmax(\vec{\tilde{a}})_i$

Model parameters are shown in red

Agenda

- Brief Intro to Deep Learning
 - Neural Networks
- Word Representation Learning
 - Neural word representation
 - word2vec with Negative Sampling
 - Bias in word representation learning

---Break----

- Recurrent Neural Networks
- Attention Networks
- Document Classification with DL

Document Classification (Recap)

- Create a document representation, e.g. using
 - TF-IDF \rightarrow spare vectors
 - Principle Component Analysis (PCA) \rightarrow dimensionality reduction
 - Latent Semantic Indexing (LSI) \rightarrow semantic vectors
 - Latent Dirichlet Allocation (LDA) \rightarrow topic-based vectors
 - Deep Learning
- Steps
 - Given document representations of training data, learn a classifier to predict the classes
 - Use the classification model to predict the classes of the test-set documents
 - Evaluate the predictions

Document Representation

- Document representation is the key!
- The classes can be more effectively predicted when document representations are linearly separable.

Two sample document representation sets, projected to two-dimensional spaces

source source

Document Classification with DL

RNNClassModel (practical session)

- \vec{x} word embedding
- \hat{y} probability distribution of predicted output
- *Decoder:* linear projection to output classes

Document Classification with DL

 \dot{h}_3

RNN

 \vec{x}_3

Challenges

 Semantics of language and the world

"The image of the world around us, which we carry in our head, is just a model. Nobody in his[/her] head imagines all the world, government or country. He[/She]

has only selected concepts, and relationships between them, and uses those to represent the real system." Mental Model [7]

- Representation Learning
 - Abstract representation of spatial and temporal aspects of information
 - Various granularities \rightarrow abstraction level
 - Task-specific, domain specific \rightarrow transfer learning
 - Commonalities among languages \rightarrow multilingual models

Challenges

- Understanding information contents
 - Information Retrieval
 - Summarization
 - Question/Answering

- Aspects of information tailoring and provision
 - Personalization vs. De-personalization
 - Controversy detection
 - Multiple points of view

Challenges

- Exploring aspects of society
 - Computational Social Science with NLP
 - Economy
 - Sociology
 - Psychology
- Ethics, fairness, and transparency
 - implications of the new technology on the society
 - Ownership of data and models, laws, etc.
 - Ethical bias in data and algorithms
 - Interpretability of the models

≡	FINANCIAL TIMES	my FT
Special Report Modern Workplace: Ethnic Diversity		~
Workplace diversity + Add to myFT		

AI risks replicating tech's ethnic minority bias across business

Diverse workforce essential to combat new danger of 'bias in, bias out'

References

[1] Jurafsky, Dan, and James H. Martin. *Speech and language processing*. Vol. 3. London: Pearson, 2014.

[2] Forrester, Jay Wright. Counterintuitive behavior of so- cial systems, 1971. URL

https://en.wikipedia.org/wiki/Mental_model. [Online; accessed 01- Nov-2017].

[3] Ha, David, and Jürgen Schmidhuber. "World Models." arXiv preprint arXiv:1803.10122 (2018)