
Neural Network Approaches to
Representation Learning for NLP

Navid Rekabsaz
Idiap Research Institute

@navidrekabsaznavid.rekabsaz@idiap.ch

Agenda

§ Brief Intro to Deep Learning
- Neural Networks

§ Word Representation Learning
- Neural word representation
- Word2vec with Negative Sampling
- Bias in word representation learning

---Break---

§ Recurrent Neural Networks
§ Attention Networks
§ Document Classification with DL

Agenda

§ Brief Intro to Deep Learning
- Neural Networks

§ Word Representation Learning
- Neural word representation
- word2vec with Negative Sampling
- Bias in word representation learning

---Break---

§ Recurrent Neural Networks
§ Attention Networks
§ Document Classification with DL

Recap on Linear Algebra
§ Scalar !
§ Vector "
§ Matrix #
§ Tensor: generalization to higher dimensions
§ Dot product

- !⃗ & "' =)
dimensions: 1×d & d×1 =1

- !⃗ & # =)⃗
dimensions: 1×d & d×e =1×e

- * & + = ,
dimensions: l×m & m×n =l×n

§ Element-wise Multiplication
- !⃗⨀" =)⃗

Neural Networks

§ Neural Networks are non-linear functions with many parameters
"⃗# = %('⃗)

§ They consist of several simple non-linear operations
§ Normally, the objective is to maximize likelihood, namely

)(#|', ,)
§ Generally optimized using Stochastic Gradient Descent (SGD)

-.
size 3x4

-/
size 4x2

'⃗ "⃗#
input vector

parameter matrices

prediction

#⃗
labels

loss function

Neural Networks – Training with SGD (simplified)

!"
size 3x4

!#
size 4x2

%⃗ &⃗'
input vector

parameter matrices

prediction

'⃗
labels

loss function

Initialize parameters
Loop over training data (or minibatches)

1. Do forward pass: given input %⃗ predict output &'
2. Calculate loss function by comparing &' with labels '
3. Do backpropagation: calculate the gradient of each parameter in

regard to the loss function
4. Update parameters in the direction of gradient
5. Exit if some stopping criteria are met

Neural Networks – Non-linearities

§ Sigmoid
- Projects input to value between 0 to 1 → becomes like a

probability value
§ ReLU (Rectified Linear Units)

- Suggested for deep architectures to prevent vanishing gradient
§ Tanh

Fetched from https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

Neural Networks - Softmax

§ Softmax turns a vector to a probability distribution
- The vector values become in the range of 0 to 1 and sum of all

the values is equal 1

!"#$%&'(*⃗), =
./0

∑2345 ./6

§ Normally applied to the output layer and provide a
probability distribution over output classes

§ For example, given four classes:
7⃗8 = 2, 3, 5, 6 !"#$%&' 78 = [0.01, 0.03, 0.26, 0.70]

Deep Learning

§ Deep Learning models the overall function as a composition
of functions (layers)

§ With several algorithmic and architectural innovations
- dropout, LSTM, Convolutional Networks, Attention, GANs, etc.

§ Backed by large datasets, large-scale computational
resources, and enthusiasm from academia and industry!

Adopted from http://mlss.tuebingen.mpg.de/2017/speaker_slides/Zoubin1.pdf

Agenda

§ Brief Intro to Deep Learning
- Neural Networks

§ Word Representation Learning
- Neural word representation
- word2vec with Negative Sampling
- Bias in word representation learning

---Break---

§ Recurrent Neural Networks
§ Attention Networks
§ Document Classification with DL

"⃗ #$ #% #& … #(
(

Vector Representation (Recall)

§ Computation starts with representation of entities

§ An entity is represented with a vector of d dimensions

§ The dimensions usually reflects features, related to an entity

§ When vector representations are dense, they are often
referred to as embedding e.g. word embedding

Word Embedding
Model

!"
!#

!$

%

Word Representation Learning

Vector representations of words projected in two-dimensional space

Intuition for Computational Semantics

“You shall know a word
by the company it
keeps!”

J. R. Firth, A synopsis of
linguistic theory 1930–1955
(1957)

Nida[1975]

Tesgüino

drink

fermented
bottle

out of corn

sacred

beverage

Mexico

alcoholic

Ale

drinkbar

grain
medieval

pale

bottle

brew

ferme
ntatio

n

alcoholic

Tesgüino ←→ Ale

Algorithmic intuition:

Two words are related when they share many
context words

19.1 • WORDS AND VECTORS 3

tors of numbers representing the terms (words) that occur within the collection
(Salton, 1971). In information retrieval these numbers are called the term weight, aterm weight

function of the term’s frequency in the document.
More generally, the term-document matrix X has V rows (one for each word

type in the vocabulary) and D columns (one for each document in the collection).
Each column represents a document. A query is also represented by a vector q of
length |V |. We go about finding the most relevant document to query by finding
the document whose vector is most similar to the query; later in the chapter we’ll
introduce some of the components of this process: the tf-idf term weighting, and the
cosine similarity metric.

But now let’s turn to the insight of vector semantics for representing the meaning
of words. The idea is that we can also represent each word by a vector, now a row
vector representing the counts of the word’s occurrence in each document. Thus
the vectors for fool [37,58,1,5] and clown [5,117,0,0] are more similar to each other
(occurring more in the comedies) while battle [1,1,8,15] and soldier [2,2,12,36] are
more similar to each other (occurring less in the comedies).

More commonly used for vector semantics than this term-document matrix is an
alternative formulation, the term-term matrix, more commonly called the word-term-term

matrix
word matrix oro the term-context matrix, in which the columns are labeled by
words rather than documents. This matrix is thus of dimensionality |V |⇥ |V | and
each cell records the number of times the row (target) word and the column (context)
word co-occur in some context in some training corpus. The context could be the
document, in which case the cell represents the number of times the two words
appear in the same document. It is most common, however, to use smaller contexts,
such as a window around the word, for example of 4 words to the left and 4 words
to the right, in which case the cell represents the number of times (in some training
corpus) the column word occurs in such a ±4 word window around the row word.

For example here are 7-word windows surrounding four sample words from the
Brown corpus (just one example of each word):

sugar, a sliced lemon, a tablespoonful of apricot preserve or jam, a pinch each of,
their enjoyment. Cautiously she sampled her first pineapple and another fruit whose taste she likened

well suited to programming on the digital computer. In finding the optimal R-stage policy from
for the purpose of gathering data and information necessary for the study authorized in the

For each word we collect the counts (from the windows around each occurrence)
of the occurrences of context words. Fig. 17.2 shows a selection from the word-word
co-occurrence matrix computed from the Brown corpus for these four words.

aardvark ... computer data pinch result sugar ...
apricot 0 ... 0 0 1 0 1

pineapple 0 ... 0 0 1 0 1
digital 0 ... 2 1 0 1 0

information 0 ... 1 6 0 4 0
Figure 19.2 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only six of the dimensions (hand-picked for pedagogical purposes). Note that a
real vector would be vastly more sparse.

The shading in Fig. 17.2 makes clear the intuition that the two words apricot
and pineapple are more similar (both pinch and sugar tend to occur in their window)
while digital and information are more similar.

Note that |V |, the length of the vector, is generally the size of the vocabulary,
usually between 10,000 and 50,000 words (using the most frequent words in the

!" !# !$!% !& !'
Aardvark computer data pinch result sugar

(" apricot 0 0 0 1 0 1
(# pineapple 0 0 0 1 0 1
($ digital 0 2 1 0 1 0
(% information 0 1 6 0 4 0

[1]

§ Number of times a word c appears in the context of the
word w in a corpus

Word-Context Matrix (Recall)

§ Our first word vector representation!!

Words Semantic Relations (Recall)

§ Co-occurrence relation
- Words that appear near each other in the language
- Like (drink and beer) or (drink and wine)
- Measured by counting the co-occurrences

§ Similarity relation
- Words that appear in similar contexts
- Like (beer and wine) or (knowledge and wisdom)
- Measured by similarity metrics between the vectors

!" !# !$!% !& !'
Aardvark computer data pinch result sugar

(" apricot 0 0 0 1 0 1
(# pineapple 0 0 0 1 0 1
($ digital 0 2 1 0 1 0
(% information 0 1 6 0 4 0

)*+*,-./0 digital, information = cosine B⃗CDEDFGH, B⃗DIJKLMGFDKI

Sparse vs. Dense Vectors (Recall)

§ Such word representations are highly sparse
- Number of dimensions is the same as the number of words in the

corpus ! ~ [10000−500000]
- Many zeros in the matrix as many words don’t co-occur

• Normally ~98% sparsity

§ Dense representations → Embeddings
- Number of dimensions usually between "~ [10−1000]

§ Why dense vectors?
- More efficient for storing and load
- More suitable for machine learning algorithms as features
- Generalize better by removing noise for unseen data

Word Embedding with Neural Networks

1. Design a neural network architecture!
2. Loop over training data (", $)

a. Set word " as input and context word $ as output
b. Calculate the output of network, namely

The probability of observing context word $ given word "

&($|")
c. Optimize the network to maximize the likelihood probability

3. Repeat

Recipe for creating (dense) word embedding with neural networks

Details come next!

Window size of 2

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

Prepare Training Samples

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

https://web.stanford.edu/~jurafsky/slp3/

Train sample: (Tesgüino, drink)

Linear activation

Words matrix Context Words matrix

Input Layer
(One-hot encoder)

Output Layer
(Softmax)

Neural Word Embedding Architecture

1×#
1×$

1×#

% #×$ & $×#

'(drink|Tesgüino)
Forward pass

Backpropagation

https://web.stanford.edu/~jurafsky/slp3/

Word vector

Ale

Tesgüino

Word vector

Ale

Tesgüino

Word vector Context vector

Ale

Tesgüino

Word vector Context vector

drink Ale

Tesgüino

Word vector

drink

Context vector

Ale

Tesgüino

Word vector Context vector

drink

- Train sample: (Tesgüino, drink)
- Update vectors to maximize !(drink|Tesgüino)

Ale

Tesgüino

§ Output value is equal to: "⃗#$%&ü()* + ,-.()/

§ Output layer is normalized with Softmax

0(drink|Tesgüino) =
exp("⃗#$%&ü()* + ,-.()/)
∑B∈D exp("⃗#$%&ü()* + ,B)

D is the set of vocabularies

§ Loss function is the Negative Log Likelihood (NLL) over all
training samples T

E = −
1
H
I
J

K

log 0 M N

Neural Word Embedding - Summary

Sorry! Denominator is too expensive!

word2vec (SkipGram) with Negative Sampling

§ word2vec an efficient and effective algorithm

§ Instead of ! " # , word2vec measures ! $ = 1 #, " : the
probability of genuine co-occurrence of #, "

! $ = 1 #, " = σ(+⃗, - ./)

§ When two words #, " appear in the training data, it is counted as
a positive sample

§ word2vec algorithm tries to distinguish between the co-occurrence
probability of a positive sample from any negative sample

§ To do it, word2vec draws k negative samples "̌ by randomly
sampling from the words distribution → why randomly?

sigmoid

§ The objective function
- increases the probability for the positive sample (", $)
- decreases the probability for the k negative samples (", $̌)

§ Loss function:

' = − 1+,-

.
log 2(3 = 1|", $) −,

56-

7
log 2(3 = 1|", $̌)

Training Samples

Negative Samples

word2vec with Negative Sampling – Objective Function

k ~ 2-10

Word vector Context vector

drink

Tesgüino

- Train sample: (Tesgüino, drink)

Word vector Context vector

drink

Tesgüino

- Train sample: (Tesgüino, drink)
- Sample k negative context words

Word vector Context vector

drink

Tesgüino

- Train sample: (Tesgüino, drink)
- Sample K negative context words
- Update vectors to

- Maximize ! " = 1 Tesgüino, drink
- Minimize !(" = 1|Tesgüino, 4̌)

Discussion about Bias in Data

§ A word embedding model captures
intrinsic patterns of the given text
corpus

§ If the data contains (ethical) bias,
the algorithm also encodes the bias
in the embedding vectors

§ Such bias can be propagated from
word embedding to end-user NLP
applications

Bias in Machine Translation

same gender-neutral pronoun

Word vector Context vector

she Nurse

Housekeeper

he

Manager

Word vector

she

Context vector

Nurse

Housekeeper

Manager

he

§ The bias of 350 occupations to female/male in the word2vec model,
created on English Wikipedia

Gender Bias in Wikipedia

