FÉDÉRALE DE LAUSANNE

Neural Network Approaches to Representation Learning for NLP

Navid Rekabsaz
Idiap Research Institute

Agenda

- Brief Intro to Deep Learning
- Neural Networks
- Word Representation Learning
- Neural word representation
- Word2vec with Negative Sampling
- Bias in word representation learning
---Break---
- Recurrent Neural Networks
- Attention Networks
- Document Classification with DL

Agenda

- Brief Intro to Deep Learning
- Neural Networks
- Word Representation Learning
- Neural word representation
- word2vec with Negative Sampling
- Bias in word representation learning
---Break---
- Recurrent Neural Networks
- Attention Networks
- Document Classification with DL

Recap on Linear Algebra

- Scalar a
- Vector \vec{b}
- Matrix W
- Tensor: generalization to higher dimensions
- Dot product
- $\vec{a} \cdot \vec{b}^{T}=c$
dimensions: $1 \times \mathrm{d} \cdot \mathrm{d} \times 1=1$
- $\vec{a} \cdot W=\vec{c}$
dimensions: $1 \times \mathrm{d} \cdot \mathrm{d} \times \mathrm{e}=1 \times \mathrm{e}$
- $A \cdot B=C$ dimensions: $1 \times m \cdot m \times n=1 \times n$
- Element-wise Multiplication
- $\vec{a} \odot \vec{b}=\vec{c}$

Neural Networks

- Neural Networks are non-linear functions with many parameters

$$
\overrightarrow{\hat{y}}=f(\vec{x})
$$

- They consist of several simple non-linear operations
- Normally, the objective is to maximize likelihood, namely

$$
p(y \mid x, \theta)
$$

- Generally optimized using Stochastic Gradient Descent (SGD)

Neural Networks - Training with SGD (simplified)

Initialize parameters
Loop over training data (or minibatches)

1. Do forward pass: given input \vec{x} predict output \hat{y}
2. Calculate loss function by comparing \hat{y} with labels y
3. Do backpropagation: calculate the gradient of each parameter in regard to the loss function
4. Update parameters in the direction of gradient
5. Exit if some stopping criteria are met

Hidden

Neural Networks - Non-linearities

- Sigmoid
- Projects input to value between 0 to $1 \rightarrow$ becomes like a probability value
- ReLU (Rectified Linear Units)
- Suggested for deep architectures to prevent vanishing gradient
- Tanh

Neural Networks - Softmax

- Softmax turns a vector to a probability distribution
- The vector values become in the range of 0 to 1 and sum of all the values is equal 1

$$
\operatorname{softmax}(\vec{v})_{i}=\frac{e^{v_{i}}}{\sum_{k=1}^{d} e^{v_{k}}}
$$

- Normally applied to the output layer and provide a probability distribution over output classes
- For example, given four classes:
$\overrightarrow{\hat{y}}=[2,3,5,6] \quad \operatorname{softmax}(\hat{y})=[0.01,0.03,0.26,0.70]$

Deep Learning

- Deep Learning models the overall function as a composition of functions (layers)
- With several algorithmic and architectural innovations
- dropout, LSTM, Convolutional Networks, Attention, GANs, etc.
- Backed by large datasets, large-scale computational resources, and enthusiasm from academia and industry!

Agenda

- Brief Intro to Deep Learning
- Neural Networks
- Word Representation Learning
- Neural word representation
- word2vec with Negative Sampling
- Bias in word representation learning
---Break---
- Recurrent Neural Networks
- Attention Networks
- Document Classification with DL

Vector Representation (Recall)

- Computation starts with representation of entities
- An entity is represented with a vector of d dimensions
- The dimensions usually reflects features, related to an entity
- When vector representations are dense, they are often referred to as embedding e.g. word embedding

Word Representation Learning

Vector representations of words projected in two-dimensional space

Intuition for Computational Semantics

"You shall know a word by the company it keeps!"

J. R. Firth, A synopsis of

linguistic theory 1930-1955 (1957)

drink sacred

alcoholic

beverage

Tesgüino

out of corn

fermented
mexico
$\mathrm{bOtt}_{\mathrm{O} / \mathrm{e}}$

brew
Ale

pale

drink
alcoholic

Tesgüino

Algorithmic intuition:
Two words are related when they share many context words

Word-Context Matrix (Recall)

- Number of times a word c appears in the context of the word w in a corpus
sugar, a sliced lemon, a tablespoonful of apricot their enjoyment. Cautiously she sampled her first pineapple well suited to programming on the digital computer. for the purpose of gathering data and information
preserve or jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy from necessary for the study authorized in the

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}
	Aardvark	computer	data	pinch	result sugar	
w_{1} apricot	0	0	0	1	0	1
w_{2} pineapple	0	0	0	1	0	1
w_{3} digital	0	2	1	0	1	0
w_{4} information	0	1	6	0	4	0

- Our first word vector representation!!

Words Semantic Relations (Recall)

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}
	Aardvark	computer	data		pinch	result sugar
w_{1} apricot	0	0	0	1	0	1
w_{2} pineapple	0	0	0	1	0	1
w_{3} digital	0	1	1	0	1	0
	w_{4} information	0	1	6	0	4

- Co-occurrence relation
- Words that appear near each other in the language
- Like (drink and beer) or (drink and wine)
- Measured by counting the co-occurrences
- Similarity relation
- Words that appear in similar contexts
- Like (beer and wine) or (knowledge and wisdom)
- Measured by similarity metrics between the vectors

$$
\operatorname{similarty}(\text { digital, information })=\operatorname{cosine}\left(\vec{v}_{\text {digital }}, \vec{v}_{\text {information }}\right)
$$

Sparse vs. Dense Vectors (Recall)

- Such word representations are highly sparse
- Number of dimensions is the same as the number of words in the corpus $n \sim$ [10000-500000]
- Many zeros in the matrix as many words don't co-occur
- Normally ~98\% sparsity
- Dense representations \rightarrow Embeddings
- Number of dimensions usually between $d \sim$ [10-1000]
- Why dense vectors?
- More efficient for storing and load
- More suitable for machine learning algorithms as features
- Generalize better by removing noise for unseen data

Word Embedding with Neural Networks

Recipe for creating (dense) word embedding with neural networks

1. Design a neural network architecture!
2. Loop over training data (w, c)
a. Set word w as input and context word c as output
b. Calculate the output of network, namely

The probability of observing context word c given word w

$$
P(c \mid w)
$$

c. Optimize the network to maximize the likelihood probability
3. Repeat

Prepare Training Samples

Window size of 2

Source Text

| The | quick | brown | fox | jumps over the lazy dog. |
| :--- | :--- | :--- | :--- | :--- | | (quick, the) |
| :--- |
| (quick, brown) |

| The quick | brown | fox | jumps | over the lazy dog. | (brown, the) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (brown, quick) | | | | | |
| | (brown, fox)
 (brown, jumps) | | | | |

| The quick | brown | fox | jumps | over |
| :--- | :--- | :--- | :--- | :--- | (fox, brown) (fox, jumps)

(fox, over)

Neural Word Embedding Architecture

Train sample: (Tesgüino, drink)

Words matrix
Context Words matrix

$$
\begin{array}{llllll}
0 & 0 & 0 & & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Oword vector

$$
\begin{array}{ccc}
00 & 0_{0}^{0_{0}^{n e c}} \\
0_{0}^{0} & 0_{0}^{00} & 0 \\
0 & & 0
\end{array}
$$

Neural Word Embedding - Summary

- Output value is equal to: $\vec{a}_{\text {Tesgüino }} \cdot \vec{b}_{\text {drink }}$
- Output layer is normalized with Softmax

$$
\begin{aligned}
& p(\text { drink } \mid \text { Tesgüino })=\frac{\exp \left(\vec{a}_{\text {Tesgüino }} \cdot \vec{b}_{\text {drink }}\right)}{\sum_{v \in \mathbb{V}} \exp \left(\vec{a}_{\text {Tesgüino }} \cdot \vec{b}_{v}\right)} \\
& \mathbb{v} \text { is the set of vocabularies }
\end{aligned}
$$

Sorry! Denominator is too expensive!

- Loss function is the Negative Log Likelihood (NLL) over all training samples T

$$
L=-\frac{1}{T} \sum_{1}^{T} \log p(c \mid w)
$$

word2vec (SkipGram) with Negative Sampling

- word2vec an efficient and effective algorithm
- Instead of $p(c \mid w)$, word2vec measures $p(y=1 \mid w, c)$: the probability of genuine co-occurrence of (w, c)

$$
p(y=1 \mid w, c)=\sigma\left(\vec{a}_{w} \cdot \vec{b}_{c}\right)
$$

sigmoid

- When two words (w, c) appear in the training data, it is counted as a positive sample
- word2vec algorithm tries to distinguish between the co-occurrence probability of a positive sample from any negative sample
- To do it, word2vec draws k negative samples č by randomly sampling from the words distribution \rightarrow why randomly?
word2vec with Negative Sampling - Objective Function
- The objective function
- increases the probability for the positive sample (w, c)
- decreases the probability for the k negative samples (w, \check{c})
- Loss function:

Negative Samples

Discussion about Bias in Data

- A word embedding model captures intrinsic patterns of the given text corpus
- If the data contains (ethical) bias, the algorithm also encodes the bias in the embedding vectors
- Such bias can be propagated from word embedding to end-user NLP applications

Bias in Machine Translation

Elaheh Raisi ©elaheh_raisi - Oct 3
Bias in google translate from Persian to English \because (Persian uses the genderneutral pronoun)

He is the manager She is a maid

same gender-neutral pronoun

Gender Bias in Wikipedia

- The bias of 350 occupations to female/male in the word2vec model, created on English Wikipedia

