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Abstract. Word embedding promises a quantification of the similarity between
terms. However, it is not clear to what extent this similarity value can be of prac-
tical use for subsequent information access tasks. In particular, which range of
similarity values is indicative of the actual term relatedness? We first observe and
quantify the uncertainty of word embedding models with respect to the similar-
ity values they generate. Based on this, we introduce a general threshold which
effectively filters related terms. We explore the effect of dimensionality on this
general threshold by conducting the experiments in different vector dimensions.
Our evaluation on four test collections with four relevance scoring models sup-
ports the effectiveness of our approach, as the results of the proposed threshold
are significantly better than the baseline while being equal to, or statistically in-
distinguishable from, the optimal results.

1 Introduction
Understanding the meaning of a word (semantics) and of its similarity to other words
(relatedness) is the core of understanding text. An established method for quantifying
this similarity is the use of word embeddings, where vectors are proxies of the meaning
of words and distance functions are proxies of semantic and syntactic relatedness. Fun-
damentally, word embedding models exploit the contextual information of the target
words to approximate their meaning, and hence their relations to other words.

Given the vectors representing words and a corresponding mathematical function,
these models provide an approximation of the relatedness of any two terms, although
this relatedness could be perceived as completely arbitrary in the language. This issue is
pointed out by Karlgren et al. [9] in examples, showing that word embedding methods
are too ready to provide answers to meaningless questions: “What is more similar to a
computer: a sparrow or a star?”, or “Is a cell more similar to a phone than a bird is
to a compiler?”. The emerging challenge here is: how to identify whether the similarity
score obtained from word embedding is really indicative of term relatedness?

1.1 Related Work

The closest study to our work is Karlgren et al. [8], which explores the semantic topol-
ogy of the vector space generated by Random Indexing. Based on their previous ob-
servations that the dimensionality of the semantic space appears different for different
terms [9], Karlgren at al. now identify the different dimensionalities at different angles
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(i.e. distances) for a set of specific terms. It is however difficult to map these observa-
tions to specific criteria or guidelines for either future models or retrieval tasks. In fact,
our observations provide a quantification on Karlgren’s claim that “‘close’ is interesting
and ‘distant’ is not” [9].

More recently, Cuba Gyllensten and Sahlgren [3] follow a data mining approach to
represent the terms relatedness by a tree structure. While they suggest traversing the
tree as a potential approach, they evaluate it only on the word sense induction tasks and
its utility for retrieving similar words remains unanswered. They do point out however,
that applying a nearest neighbour approach, where for every word we use the top k most
similar words, is not theoretically justifiable. Rekabsaz et al. [17] recently showed this
also experimentally in a retrieval task.

In general, different characteristics of term similarities have been explored in sev-
eral studies: the concept of relatedness [10, 12], the similarity measures [11], intrin-
sic/extrinsic evaluation of the models [1, 4, 19, 21], or in sense induction task [3, 5].
However, there is lack of understanding on the internal structure of word embedding,
specifically how its similarity distribution reflects the relatedness of terms.
1.2 Motivation
Among the recent publications using word-embeddings for information retrieval, Rek-
absaz et al. [17] do a brute-force search on similarity thresholds for the typical ad-hoc
search task and evaluate their results against a set of TREC test collections. The pa-
rameter scan is obviously inefficient in general and we consider their work as the main
motivation for the current study of a language-specific semantic similarity threshold.

In fact, we hypothesise that the “similar” words can be identified by a threshold on
similarity values which separates the semantically related words from the non-related
ones. We especially want to make this threshold independent of the terms and general
on word embedding model. The reason for this choice is first the computational problem
of term-specific thresholds as it puts burden on practical applications. Regardless of the
efficiency issues, it is still reasonable to consider a general threshold. since it considers
the centrality and neighbourhood of the terms by filtering different number of similar
terms for each term.

Such a threshold has the potential to improve all studies that use similar/related
words in different tasks i.e. query expansion [7], query auto-completion [14], document
retrieval [16], learning to rank [20], language modelling in IR [6], or Cross-Lingual
IR [22]. It should be noted though, that the meaning of “similar” also depends on the
similarity function. We consider here the Cosine function as it is by far the most widely
used word similarity function and leave the exploration of other functions for further
studies. In fact, regardless of the similarity function, a threshold that separates the se-
mantically related terms from the rest will always be an essential element to identify.
1.3 Approach
We explore the estimation of this potential threshold by first quantifying the uncertainty
in the similarity values of embedding models. This uncertainty is an intrinsic charac-
teristic of all the recent models, because they all start with some random initialization
and eventually converge to a (local) solution. Therefore, even by training with the same
parameters and on the same data, the created word embedding models result in slightly
different word distributions and hence slightly different relatedness values. In the next
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step, using this observation, we provide a novel representation on the expected num-
ber of neighbours of an arbitrary term as a continuous function over similarity values,
which is later used to estimate the general threshold.

In order to evaluate the effectiveness of the proposed threshold, we follow the ap-
proach previously introduced by Rekabsaz et al. [17] and test it in the context of a
document retrieval task, on four different test collections, using the skip-gram with
negative-sampling training word embeddings [13]. In the experiments, we apply the
threshold to identify the set of terms to extend the query terms using both the Gener-
alised Translation Model and the Extended Translation Model introduced by Rekabsaz
et al. [17]. The results are compared with the optimal threshold, achieved as before
by exhaustive search on the spectrum of threshold parameters. We show that in gen-
eral using the proposed threshold performs either exactly the same as, or statistically
indistinguishable from, the optimal threshold.

In summary, the main contributions of this paper are:
1. exploration of the uncertainty in word embedding models in different dimensions

and similarity ranges.
2. introducing a general threshold for separating similar terms in different embedding

dimensions.
3. extensive experiments on four test collections comparing different threshold values

on different retrieval models.
The remainder of this work is structured as follows: We introduce the proposed

threshold in Section 2. We present our experimental setup in Section 3, followed by
discussing the results in Section 4. Section 5 summarises our observations and con-
cludes the paper.

2 Global Term Similarity Threshold
We are looking for a threshold to separate the related terms from the rest. For this pur-
pose, we start with an observation on the uncertainty of similarity in word embedding
models, followed by defining a novel model of the expected number of neighbours for
an arbitrary term, before we define our proposed threshold.

2.1 Uncertainty of Similarity
In this section we make a series of practical observations on word embeddings and the
similarities computed based on them.

To observe the uncertainty, let us consider two models P and M . To create each in-
stance, we trained the Skip-Gram with Negative-Sampling (SGNS) of the Word2Vec
model with the sub-sampling parameter set to 10−5, context windows of 5 words,
epochs of 25, and word count threshold 20 on the Wikipedia dump file for August 2015,
after applying the Porter stemmer. Each model has a vocabulary of approximately 580k
terms. They are identical in all ways except their random starting point.

Figure 1a shows the distances between two terms and all other terms in the dictio-
nary, for the two models, in this case of dimensionality 200. For each term we have
approximately 580k points on the plot. As we can see, the difference between similari-
ties calculated in the two models, appears (1) greater for low similarities, and (2) greater
for a rare word (Dwarfish) than for a common word (Book). We can also observe that
there are very few pairs of words with very high similarities.
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Fig. 1: (a) Comparison of similarity values of the terms Book and Dwarfish to 580K
words between models M and P . (b) Histogram of similarity values of an arbitrary
term to all the other words in the collection for 100, 200, 300, and 400 dimensions.

Let us now explore the effect of dimensionality on similarity values and also uncer-
tainty. Before that, in order to generalize the observations to an arbitrary term, we had
to consider a set of “representative” terms. What exactly “representative” means is of
course debatable. We took 100 terms recently introduced in the query inventory method
by Schnabel et al. [19]. They claim that the selected terms are diverse in frequency and
part of speech over the collection terms. In the remainder of the paper, we refer to arbi-
trary term as an aggregation over the representative terms i.e. each value related to the
arbitrary term is the average of the values of the representative terms.

Figure 1b shows frequency histograms for the occurrence of similarity values for
models of different dimensionalities. As we can see, similarities are in the [−0.2, 1.0]
range and have positive skewness (the right tail is longer). As the dimensionality of the
model increases, the kurtosis also increases (the histogram has thinner tails).

Let us first suggest a concrete definition for uncertainty: We quantify the uncertainty
of the similarity between two words as the standard deviation σ of similarity values
obtained from a set of identical models. We refer to identical models as the models
created using the same method, parameters, and corpus. However as shown before, the
similarity values of each word pair in each model are slightly different. The uncertainty
of similarity between the words x and y is therefore formulated as follows:

σx,y =

√
1

|M |
∑
m∈M

(sim(xm − ym)− µ)2, where µ =

∑
m∈M sim(xm − ym)

|M |
.

where M is the set of identical models and xm is the vector representation of term x in
model m and sim is a similarity function between two vectors.

To observe the changes in standard deviation, for every dimensionality, we create
five identical SGNS models (|M | = 5).

Figure 2a plots the standard deviation, against the similarity values, for different
model dimensionalities. For the sake of clarity in visualisation, we split the similarity
values into 500 equal intervals (each 2.4×10−4) and average the values in each interval.
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Fig. 2: (a) Standard deviation for similarity values. Points are the average over similarity
intervals with equal lengths of 2.4×10−4 (b) Probability distribution of similarity values
for the term Book to some other terms.

The plots are smooth in the middle and scattered on the head and tail as the majority
of similarity values are in the middle area of the plots and therefore the average values
are consistent. However, we can observe that overall, as the similarity increases, the
standard deviation, i.e. the uncertainty, decreases.

We also observe a decrease in standard deviation as the dimensionality of the model
increases. On the other hand, the differences between models decrease as the dimension
increases such that the models of dimension 300 and 400 seem very similar in compar-
ison to 100 and 200. The observation shows a probable convergence in the uncertainty
at higher dimensionalities.

These observations show that the similarity between terms is not an exact value but
can be considered as an approximation whose variation is dependent on the dimension-
ality and similarity range. We use the outcome of these observations in the following.

2.2 Continuous Distribution of Neighbours
We have demonstrated that the similarity values of a pair of terms, obtained from iden-
tical embedding models are slightly different. In the absence of additional information,
we assume that these similarity values follow a normal distribution.

To estimate this probability distribution, we use the mean and standard deviation
values in Section 2.1. Figure 2b shows the probability distribution of similarities for
term Book to 25 terms in different similarity ranges1. As observed before, by decreasing
the similarity, the standard deviation of the probability distributions increases.

We use these probability distributions to provide a representation of the expected
number of neighbours around an arbitrary term in the spectrum of similarity values: We
first calculate the Cumulative Distribution Functions (CDF) of the probability distribu-
tions. We then subtract the CDF values from 1 which only reverses the direction of the
distributions (from increasing left-to-right on X-axis to right-to-left). Finally, we accu-
mulate all the cumulative distribution functions by summing all the values, shown in
Figure 3a. The values on this plot indicate the number of expected neighbours that have

1 we do not plot all the terms in the model to maintain the readability of the plot
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Fig. 3: (a) Mixture of cumulative probability distributions of similarities in different di-
mensions (b) Expected number of neighbours around an arbitrary term with confidence
interval. The average number of synonyms in WordNet (1.6) is shown by the dash-line.

greater or equal similarity values to the term than the given similarity value. We can see
the number of all the terms in the model (580k) in the lowest similarity value (−0.2)
which then rapidly drops as the similarity increases. This representation of the expected
number of neighbours in Figure 3a has two benefits: (1) the estimation is continuous
and monotonic, and (2) it considers the effect of uncertainty based on five models.

As noted before, the notion of arbitrary term is in fact an average over the 100 rep-
resentative terms. Therefore, in calculating the representation of the expected number
of neighbours, we also consider the confidence interval around the mean. This interval
is shown in Figure 3b. Here, the representation is zoomed on the lower right corner of
Figure 3a. The area around each plot shows the confidence interval of the estimation.

This continuous representation is used in the following for defining the threshold
for the semantically related terms.

2.3 Similarity threshold
Given the expected number of neighbours around the arbitrary term, represented in Fig-
ure 3a and Figure 3b, the question is “what is the best threshold for filtering the related
terms?”. In order to address the question, we hypothesise that since this general thresh-
old tries to separate related from unrelated terms, it can be estimated from the average
number of synonyms over the terms. Therefore, we transform the above question into a
new question: “What is the expected number of synonyms for a word in English?”

To answer this, we exploit WordNet. We consider the distinct terms in the related
synsets to a term as its synonyms, while filtering the terms containing multi word
(e.g. Natural Language Processing, shown in WordNet in Natural Language Processing
form) since in creating the word embedding models such terms are considered as sepa-
rated terms (one word per term). The average number of synonyms over all the 147306
terms of WordNet is 1.6, while the standard deviation is 3.1.

Using the average value of the synonyms in WordNet, we define our threshold for
each model dimensionality as the point where the estimated number of neighbours in
Figure 3b is equal to 1.6. We also consider an upper and lower bound for this threshold
based on the points on the similarity axis at which the confidence interval plots cross
the horizontal line of the average value. The results are shown in Table 1.
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Table 1: Proposed thresholds for various
dimensionalities Dimensionality Threshold Boundaries

Lower Main Upper
100 0.802 0.818 0.829
200 0.737 0.756 0.767
300 0.692 0.708 0.726
400 0.655 0.675 0.693

In the following sections, we validate the hypothesis by evaluating the performance
of the proposed thresholds with an extensive set of experiments.

3 Experimental Methodology

We test the effectiveness of our threshold in an Ad-hoc retrieval task on IR test col-
lections by evaluating the results of applying various thresholds to retrieve the related
terms.

Our relevance scoring approach is based on the query language model [15] and
BM25 methods as two widely used and established methods in IR, which have shown
competitive results in various domains. To use the additional information provided by
word embeddings, we use the Generalized Translation Model and Extended Translation
Model extensions introduced by Rekabsaz et al. [17], which build on top of the existing
probabilistic models.

In the following, first we briefly explain the translation models when combined with
word embedding similarity and then describe the details of our experimental setup.

3.1 Generalized and Extended Translation Model

In principle, a translation model introduces in the estimation of the relevance of the
query term t a translation probability PT , defined on the set of (related) terms R(t),
always used in its conditional form PT (t|t′) and interpreted as the probability of ob-
serving term t, having observed term t′.

Translation models in IR were first introduced by Berger and Lafferty [2] as an ex-
tension to the language model. Recently, Rekabsaz et al. [17] extend the idea of trans-
lation model into four probabilistic relevance frameworks. Their approach is based on
the observation that what one wants to compute in general in IR, and in particular in a
probabilistic method, is the occurrence of concepts. Traditionally, these are represented
by the words present in the text, quantified by term frequency (tf ). Rekabsaz et al. posit
that we can have a tf value lower than 1 when the term itself is not actually present, but
another, similar term occurs in the text. They call this the Generalised Translation model
(GT). However, in the probabilistic models, a series of other factors are computed based
on tf (e.g. document length). Propagating the above changes to all the other statistics
leads to even more changes in the scoring formulas. They refer to this as the Extended
Translation model (ET).

In both translation models, they use word embedding to generate the R(t) set by
selecting the terms with the similarity value of greater than a given threshold to the
query term t. In the following experiments we will show that the analytically obtained
threshold described in the previous section is optimal for the ad-hoc retrieval task.
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3.2 Experiment Setup
We evaluate our approach on four test collections: TREC-6, TREC-7, and TREC-8 of
the AdHoc track, and TREC-2005 HARD track. Table 2 summarises the statistics of
the test collections. For pre-processing, we apply the Porter stemmer and remove stop
words using a small list of 127 common English terms.
Table 2: Test collections used in this
paper

Name Collection # Documents
TREC 6 Disc4&5 551873

TREC 7 and 8
Disc4&5

without CR 523951

HARD 2005 AQUAINT 1033461

In order to compare the performance of the thresholds, we test a variety of thresh-
old values for each model. The thresholds cover a set of values on both sides of our
introduced thresholds: for 100 dimension {0.67, 0.70, 0.74, 0.79, 0.81, 0.86, 0.91, 0.94,
0.96}, 200 dimension {0.63, 0.68, 0.71, 0.73, 0.74, 0.76, 0.78, 0.82}, 300 dimension
{0.55, 0.60, 0.65, 0.68, 0.70, 0.71, 0.73, 0.75}, and 400 dimension {0.41, 0.54, 0.61,
0.64, 0.66, 0.68, 0.70, 0.71, 0.75}.

We set the basic models (language model or BM25) as baseline and test the statisti-
cal significance of the improvement of the translation models with respect to their basic
models (indicated by the symbol †). Since the parameter µ for Dirichlet smoothing of
the translation language model and also b, k1, and k3 for BM25 are shared between the
methods, the choice of these parameters is not explored as part of this study and we use
the same set of values as in Rekabsaz et al. [17]. The statistical significance test are done
using the two sided paired t-test and statistical significance is reported for p < 0.05.

The evaluation of retrieval effectiveness is done with respect to Mean Average Pre-
cesion (MAP) and Normalized Discounted Cumulative Gain at cut-off 20 (NDCG@20),
as standard measures in Adhoc information retrieval. Similar to Rekabsaz et al. [17] and
in order to make the results comparable with this study, we consider MAP and NDCG
over the condensed lists [18].

4 Results and Discussion
The evaluation results of the MAP and NDCG@20 measures of the BM25 Extended
Translation (BM-ET) model on the four test collections, with vectors in 100, 200, 300,
and 400 dimensions are shown in Figure 4. Due to lack of space, we only show the de-
tailed results of the BM-ET model as it has shown the best overall performance among
the other translation models in Rekabsaz et al. [17]. For each dimension, our thresh-
old and its boundaries (the interval between the lower and upper bound in Table 1) are
shown with vertical lines. The baseline (basic BM25) is shown in the horizontal line.
Significant differences of the results to the baseline are marked by the † symbol.

The plots show that the performance of the translation models are highly dependent
on the choice of the threshold value. In general, we can see a trend in all the models: the
results tend to improve until reaching a peak (optimal threshold) and then converges to
the baseline. Based on this general behaviour, we can assume that including the terms
whose similarity values are less than the optimal threshold introduces noise and deteri-
orates the results while using the cutting point greater than the optimal threshold filters
the related terms too strictly. We test the statistical significance between the results of
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Fig. 4: MAP (above) and NDCG@20 (below) evaluation of the BM25 Extended Trans-
lation model on TREC-6, TREC-7, TREC-8 Adhoc, and TREC-2005 HARD for differ-
ent thresholds (X-axes) and word embedding dimensions. Significance is shown by †.
Vertical lines indicate our thresholds and their boundaries in different dimensions. The
baseline is shown by the horizontal line. To maintain visibility, points with very low
performance are not plotted.
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Fig. 5: Percentage of improvement of the relevance scoring models BM25 and Lan-
guage Model (LM), combined with the Generalized Translation (GT) and Extended
Translation (ET) models with respect to the baselines (standard LM and BM25) with
the MAP (above) and NDCG@20 (below) evaluation measures for different thresholds,
and word embedding dimensions, aggregated over all the collections.
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the optimal and proposed threshold in all the experiments (both evaluation measures,
all relevance scoring models, collections, and dimensions), observing no significant dif-
ference in any of the cases.

In order to have an overview of all the models, we calculate the gain of each rele-
vance scoring model for different thresholds and dimensionalities over its correspond-
ing baseline and average the gains on the four collections. The scoring models are BM25
and Language Model (LM), combined with the Generalized Translation (GT) and Ex-
tended Translation (ET) models. The results for MAP and NDCG are depicted in Fig-
ure 5. In all the translation models, our threshold is optimal for dimensions 100, 200,
and 300. In dimension 400, the significance test between their results does not show
any significant difference. These results justify the choice of the proposed threshold as
a generally stable and effective cutting-point for identifying related terms.

To observe the effect of the proposed threshold, let us take a closer look at the
terms, filtered as related terms. Table 3 shows some examples of the retrieved terms
when using the word embedding model with 300 dimensions with our threshold (same
as optimal in this dimension for all the translation models). As expected, the exam-
ples show the strong differences in the number of similar words for various terms. The
mean and standard deviation of the number of similar terms for all the query terms of
the tasks is 1.5 and 3.0 respectively. Almost half of the terms are not expanded at all.
We can observe the similarity between this calculated mean and standard deviation and
the aggregated number of synonyms we observed in WordNet in Section 2.3—mean of
1.6 and standard deviation of 3.1. It appears that although the two semantic resources
(WordNet and Word2Vec) cast the notion of similarity in different ways and their pro-
vided sets of similar terms are different, they correspond to a similar distribution of the
number of related terms.

Table 3: Examples of simi-
lar terms, selected with our
threshold

book: publish, republish, foreword, reprint, essay
eagerness: hoping, anxious, eagerness, willing,wanting
novel: fiction, novelist, novellas, trilogy
microbiologist: biochemist, bacteriologist, virologist
shame: ashamed
guilt: remorse
Einstein: relativity
estimate, dwarfish, antagonize: no neighbours

5 Conclusion

We have analytically explored the thresholds on similarity values of word embedding to
select related terms. Based on empirical observations on various models trained on the
same data, we have introduced a method to identify the minimal cosine similarity value
between two term vectors, allowing practical use of similarity values. The proposed
threshold is estimated based on a novel representation of the neighbours around an
arbitrary term, taking into account the variance of similarity values, captured from the
values generated by different instances of identical models.

We extensively evaluate the application of the introduced threshold on four infor-
mation retrieval collections using four state-of-the-art relevance scoring models. The
results show that the proposed threshold is identical to the optimal threshold (obtained
by parameter scan) in the sense that its results on ad-hoc retrieval tasks are either equal
to or statistically indistinguishable from the optimal results.
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