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ABSTRACT
A recurring question in information retrieval is whether term as-
sociations can be properly integrated in traditional information re-
trieval models while preserving their robustness and effectiveness.
In this paper, we revisit a wide spectrum of existing models (Piv-
oted Document Normalization, BM25, BM25 Verboseness Aware,
Multi-Aspect TF, and Language Modelling) by introducing a gener-
alisation of the idea of the translation model. This generalisation is
a de facto transformation of the translation models from Language
Modelling to the probabilistic models. In doing so, we observe a
potential limitation of these generalised translation models: they
only affect the term frequency based components of all the mod-
els, ignoring changes in document and collection statistics. We
correct this limitation by extending the translation models with the
statistics of term associations and provide extensive experimental
results to demonstrate the benefit of the newly proposed methods.
Additionally, we compare the translation models with query expan-
sion methods based on the same term association resources, as well
as based on Pseudo-Relevance Feedback (PRF). We observe that
translation models always outperform the first, but provide com-
plementary information with the second, such that by using PRF
and our translation models together we observe results better than
the current state of the art.

Keywords
IR Models; translation model; word embeddings; related terms

1. INTRODUCTION
In Information Retrieval, terms are still the fundamental build-

ing blocks for establishing topical relevance relationships between
documents and queries. This is not a limitation of the research, nor
of the machines, but rather a fact of human communication. We
count terms because we cannot otherwise quantify meaning.
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This is not for lack of trying. Distributional semantics became
popular with Latent Semantic Analysis/Indexing (LSA/LSI) [6]
in the early 1990s. Probabilistic Latent Semantic Indexing [10]
(pLSI), Latent Dirichlet Allocation [4] (LDA), Random Index-
ing [28], and most recently, neural-network based learning meth-
ods [23] are its successors.

Nevertheless, the “basic” models based on the Probabilistic Re-
trieval (PR) Framework [30], and language modelling [27] have
maintained a respectable command of the research and practice of
IR. Despite their differences in the event spaces on which proba-
bilities are being considered, they are all fundamentally based on
term frequency (tf ) as a representation of the importance of a term
within a document, and document frequency (df ) as a representa-
tion of the specificity of a term, potentially normalised, pivoted, or
smoothed by collection statistics (e.g. average document length,
average term frequency, collection frequency).

The extension of these models with some form of semantic
matching receives continuous attention in our community. Re-
cently, Li and Xu [20] published a survey on the topic, grouping
the various approaches into 5 categories:

1. Matching by Query Reformulation
2. Matching with Translation Model
3. Matching with Term Dependency Model
4. Matching with Topic Model
5. Matching with Latent Space Model

Both Topic Modelling and Latent Space Models are still to be con-
clusively proven competitive in terms of both efficiency and effec-
tiveness with probabilistic and language models.

Term Dependency Models address one of the fundamental as-
sumptions in IR and attempt to go beyond the Bag-of-Words model.
Recently, Hudson and Croft [11] presented a systematic compari-
son of such models. This line of research is complementary to the
current study.

Of the five categories, we focus here on Translation Models and
Query Reformulations. The two are in fact related, because one
may argue that a translation model acts as if the query had been
reformulated. Both have a considerable history behind them. Con-
sidering Pseudo-Relevance Feedback (PRF) as a form of query re-
formulation, we can trace this back to the the late 60s [31], while
translation models have appeared immediately after the introduc-
tion of language models in the late 90s [3].

Essentially, translation models as introduced by Berger and Laf-
ferty extend the probability of a query q given the model Md of a
document d by including a translation probability PT between all
the terms td of the document d and each term tq of the query:

P (q|Md) =
∏
tq∈q

∑
td∈d

PT (tq|td)P (td|Md)

 (1)



While translation models have been further investigated in the
context of language modelling (most recently in the work of
Karimzadehgan et al. [12, 13]), the idea has not been considered
in the context of the Probabilistic Relevance Framework.

In the context of the current popularity of neural-network based
methods for distributional semantics, it is therefore interesting to
revisit these models, and potentially extend them towards the prob-
abilistic models.

To address this, we propose to expand the PR Framework-based
IR models in a way that does not affect their core tenets, but still
takes advantage of the newly available, high-quality results in term-
term similarity.

As before, we consider the terms as the representations of mean-
ing. A query “information management” is the composition of the
two concepts denoted by the two terms. When to compute a tf /df
score we count occurrences, we implicitly assume that a document
containing the term “information” will be to some extent (propor-
tional to the tf ) about the concept denoted by this term. Equally, if
the term “information” appears in many documents, we implicitly
assume that it is not a discriminative term (proportional to df ). A
document containing the term “knowledge” however, is also related
to the concept “information”, yet it does not contribute to the sense
of a document not containing “knowledge”. If we think of “infor-
mation” however not as a term, but as a concept, we are entitled
to replace the term “knowledge” with “information” and assign it
a lower weight. It is here that the term-term similarity comes into
play: the similarity is used to compute such a weight. Essentially,
we are not even expanding the meaning of term frequency, because
there was always an implicit assumption that we are counting con-
cepts (this is why we normally do stemming). We propose to sim-
ply give tf the possibility to have values below 1, when terms are
conceptually related but are not the same.

This change, while coming from a different perspective on the
nature of text documents, can be viewed as a generalization of the
translation model idea from LM to the PR Framework.

However, when observed from the PR Framework perspective,
this change has some implications on the other statistics used in
IR models: document length, document frequency, collection fre-
quency. For instance, if we change the tf , then the length of a
document, which is the sum of the tf values of its terms, changes
as well. We set out to investigate the effects of these changes as
well.

In summary, the main contributions of the current study are:

1. a generalisation of the idea of translation models into the PR
framework models (we consider four models: Pivoted Docu-
ment normalization, BM25, BM25 Verboseness Aware, and
Multi-Aspect TF)

2. an extension of the translation models in PR Framework by
considering the effects of changing tf on all other term, doc-
ument, and collection statistics.

3. extensive experimental results comparing the traditional
translation model, the newly proposed ones, as well as query
expansion methods, including Pseudo-Relevance Feedback.

The proposed models go beyond the state of the art in experimental
results, and maintain the simplicity and robustness of the existing
models, despite the fact that, at least in this paper, we do not per-
form any optimisation on existing parameters (e.g. b, k1 in BM25).

The remainder of this work is structured as follows: First, we re-
view related work in Section 2. We introduce the translation as well
as extended IR models in Section 3. We present our experimental
setup in Section 4, followed by discussing the results in Section 5.
Section 6 summarises our observations and concludes the paper.

2. BACKGROUND AND RELATED WORK
We should start by noting that fundamentally this study ad-

dresses the problem of synonymity in information retrieval and
therefore the following page will not do justice to the amount of
related work in this area. As pointed out in the introduction, we
investigate the benefits of a newly available resource in IR (neural-
network based term similarities), revisit a classic method to use
term-term relations (translation model) and expand it to the proba-
bilistic relevance framework. We also compare with query expan-
sion methods. This section is therefore structured along these lines.
2.1 Word embeddings

Before talking about the retrieval models or the query expansion
methods, a few notes about the term-term similarity method used.
We are, from the onset, omitting any consideration of manually
created resources. There are well known reasons to do so, primarily
concerning their creation costs and extensibility to new domains
and languages.

In terms of automatically created similarity resources, there are
several variants of considering co-occurrence, or context similarity.
The currently undisputed state of the art is neural network based.
We use the method proposed by Mikolov et al. [23]: skip-gram
with negative-sampling training (SGNS) method in the Word2Vec
framework.

While this is not the newest method in this category (e.g. Pen-
nington et al. [26] introduced GloVe and reported superior results),
independent benchmarking provided by Levy et al. [19] shows that
there is no fundamental performance difference between the recent
word embedding models. In fact, based on their experiments, they
conclude that the performance gain observed by one model or an-
other is mainly due to the setting of the hyper-parameters of the
models. Their study also motivates our decision to use SGNS:
“SGNS is a robust baseline. While it might not be the best method
for every task, it does not significantly underperform in any sce-
nario.”
2.2 Retrieval models

Berger and Lafferty [3] introduced translation models almost two
decades ago as an extension to the language modelling, specifically
the Query Likelihood model. In the Query Likelihood model, the
score of a document d with respect to a query q is considered to be
the probability of generating the query with a model Md estimated
based on the document: score(q, d) = P (q|Md)

The method to estimate P (q|Md) is therefore the essence here.
This implies two issues: defining what kind of model Md should
be, and estimating the probability of q given the chosen model type.
Typically, the model is a multinomial distribution and the proba-
bility is computed with a maximum likelihood estimator, together
with some form of smoothing. This smoothing, while not being
part of the original idea, is in the practice of LM-based methods of
paramount importance. However, this not being the focus of this
study, we use Dirichlet smoothing [38], as many others have done,
successfully, before us [12, 34, 41].

A translation model introduces in the estimation of P (q|Md) a
translation probability PT (see Eq. 1) defined on the set of terms,
always used in its conditional form PT (t|t′) and interpreted as the
probability of observing term t, having observed term t′.

This adds a third issue to the two above. Berger and Lafferty
had used for computing PT the scan Expectation Maximisation ap-
proach inspired by machine translation approaches. Karimzade-
hgan and Zhai [12] explored translation models using mutual in-
formation. Zuccon et al. [41] extend the work by evaluating word
embeddings on translation language models. The work shows po-
tential improvement in applying word embedding. We reproduce
some of the experiments in these last two studies.



Other recent studies have combined language modelling and
distributional semantics: Ganguly et al. [8] expand the classic
language models through word embedding-based noisy channels
which aim to discover the hidden dependencies between terms.
Vulić and Moens [34] essentially provide a linear combination be-
tween language modeling and word embedding-based scores, cal-
culated by generating an aggregated vector for the query. Both of
these methods are ad-hoc insertions of the term-term dependence
in the language modelling framework. With respect to the results
presented by Ganguly et al., our experiments show significant im-
provement. Vulić and Moens focus on multilingual data and pro-
vide results only on one, custom, test collection.

In general, while query likelihood models have demonstrated ex-
cellent performance in standardized benchmarking, a recurrent cri-
tique has been that they do not model the concept of relevance.
Lafferty and Zhai [17] introduced a formal way to relate language
modelling to relevance, but this has been disputed by Robert-
son [29] and others. Research in the context of the Probabilistic
Relevance Framework has continued in parallel to that on language
modelling, with recently introduced models like the Multi Aspect
TF (MATF [24]), BM25 Verboseness Aware (BM25VA [22]), and
Significant Words Language Model [7] demonstrating state of the
art results.

There have been repeated efforts to expand methods of the proba-
bilistic relevance framework with information about term-term re-
latedness (also referred to as dependence or similarity). For in-
stance, Zheng and Callan [40] address query term weighting by
exploiting word embedding as a feature vector to train a model for
the optimal term weights. However, keeping the changes limited to
the set of terms in the original query significantly limits the impact
of their method.

Zhao et al. [39] defined a set of methods for distance-based cross
term dependence and use them to modify the IR components i.e.
document term frequency, and document frequency for boosting
retrieval. However, the focus of their study was terms appearing in
proximity of each other in terms of their locations in the documents,
not in terms of their semantic representations. More recently, Li-
oma et al. [21] further explored the issue of co-occurring terms as
indication of divergence from the compositional assumption (i.e.
that a phrase composed of n terms has a meaning that can be ex-
plained by the composition of the meaning of the n terms). These
studies, addressing fundamentally the disadvantages of the unigram
bag-of-words models are complementary to the present study.

2.3 Query expansion
Expanding existing retrieval models with term-term similarity

using translation models has an intuitive connection with direct
query expansion methods, where terms are actually added to the
query and/or weights are being recalculated. Xu and Croft [36],
in one of the earlier papers in this area divides query expansion
methods in global techniques and local feedback. That is, we can
either use general knowledge about the terms, extracted from exter-
nal resources such as logs [5, 9], manual or automatic knowledge-
bases [16, 35, 37], or we can use some form of pseudo-relevance
feedback (PRF) [1, 18, 31]. The two methods actually use comple-
mentary information sources, so we will consider them both sepa-
rately and combined, in our experimental section.

For the global techniques, more than for the local feedback meth-
ods, attention has to be paid to the proper weighting of the new
terms, as they come from outside the model used to rank docu-
ments. Cui et al. [5] and later Gao and Nie [9] used a logarithm to
weight a term with respect to the query and the term-term similari-
ties:

w(t) = ln

∏
tq∈Q

PT (t|tq) + 1

 (2)

Another way to normalize the weights on some set T of candidate
terms to be added to the query is:

w(t) =
PT (t|tq)∑

t′∈T PT (t′|tq)
(3)

This was done for instance by Xiong and Callan [35] when consid-
ering Freebase as a source of external knowledge.

In terms of Pseudo Relevance Feedback (PRF) the probabilis-
tic relevance framework has a built-in concept of relevance and
therefore can naturally incorporate information provided through
feedback, be it from users or pseudo [30]. For language mod-
elling, Lavrenko and Croft [18] introduced the Relevance Model
(RM), which selects expansion terms from top ranked documents
and weights them based on the score of document ranking.

The divergence from randomness (DFR) framework [2] also al-
lows a relatively straight-forward inclusion of feedback informa-
tion: Amati et al. [1] study the robustness of QE by two factors:
divergence of the distribution of the query term in the retrieved doc-
uments from a random distribution and the frequency of the term
in the whole document. In this paper, we use one of the variants
explored in Amati’s study (the Bose-Einstein 1), via its implemen-
tation in Terrier. As the authors pointed out, it had been shown to
perform well in previous TREC tasks. Nevertheless, we specifi-
cally decided not to chose a QE method based on either the proba-
bilistic relevance framework or language modelling, as we wanted
to minimize the possibility of introducing unknown effects in our
experiments when we compare these two models.

3. NOVEL TRANSLATION MODELS
We now introduce our approach to integrate the ideas of the

translation model in the Probability Relevance Framework, refer-
ring to as Generalized Translation Model. We put the focus of this
study on four models: two classical: Pivoted Length Normaliza-
tion [33] and BM25, and two state-of-the-art schemes: Multi As-
pect Term Frequency [24] and BM25 Verboseness Aware [22].

While translation models only focus on changing the tf com-
ponents, when we consider the relation between tf and other
document and collection statistics in the probabilistic relevance
framework, a valid hypothesis to investigate is that simultaneously
changing the other components (e.g. df , document length) would
further improve the final models. Our assumption is that these new
models benefit from semantic relations of the terms while the ro-
bustness of the original models has been preserved. We call this
approach Extended Translation Model and integrate it in the prob-
abilistic relevance as well as the language modelling framework.

In what follows, first we explain the approach to extend the basic
components of the models (tf , df ) and then use the extended com-
ponents to introduce the translation models in the four probability
relevance models as well as in language modelling. Finally, we
briefly revisit query expansion, explaining the approach for com-
bining it with any translation model.

3.1 Basic Components
The fundamental idea of the introduced translation methods is,

for each term t of a query q, to replace any existing related terms t′

in a document d with the term itself, but counting its occurrence as
less than 1. Consequently, a set of changes will appear in the def-
initions of tfd, df , and Td (term frequency, document frequency,
and the set of terms in a document).



In order to define the new components, we first denote the set
related terms to a given term as R(t). The similarity value of each
term in this set is expected to be between 0 and 1. In this work,
we calculate the value by using the Cosine function of the vector
representations of the terms from a word embedding model. While
the use of Cosine may be arguable in this context, it is the current
practice and an investigation in this sense is outside the scope of this
study. To create this set, we follow two approaches: 1. using the
top-N most similar terms and 2. filtering the terms with similarity
values higher than a threshold. The details of each will be discussed
in the next sections.

Let us start with Td : the set of terms associated with a document
d changes with respect to a query q by replacing each related term
with the term of the query to which it is related:

T̂d = Td \
⋃
t∈q

{
t′ ∈ R(t)

}
∪ {t ∈ q : R(t) ∩ Td 6= ∅} (4)

As a consequence of this redefinition of the documents, we must
change the document frequency statistic accordingly:

d̂f t =
∣∣{d ∈ D : t ∈ Td ∨ ∃t′ ∈ R(t), t′ ∈ Td}

∣∣ (5)

where D is the set of the documents in the collection. As defined
here, the extended document frequency d̂f t considers the docu-
ments containing sufficiently similar words in addition to the ones
with the term itself. The hypothesis is that it prevents over-scoring
of the documents that have terms with many similar terms in the
query.

Finally, and most importantly, given the set of the related terms
to the query, we define the extended term frequency as follows:

t̂f d(t) = tfd(t) +
∑

t′∈R(t)

PT (t|t′)tf d(t
′) (6)

As defined, the new t̂f d(t) extends the basic tfd(t) by simi-
lar terms and therefore rewards the documents with more related
terms.

Given the above three fundamental building blocks, the other
remaining components are defined as follows:
L̂d =

∑
t∈T̂d

t̂f d(t) document length

âvgdl = 1
|D|
∑
d∈D L̂d average document length

t̂f c(t) =
∑
d∈D t̂f d(t) term collection frequency

L̂c =
∑
t∈T t̂f c(t) collection size

âvgtf d = 1

|T̂d |
∑
t∈T̂d

t̂f d(t) average term frequency

m̂avgtf = 1
|D|
∑
d∈D âvgtf d mean average term frequency

where their original forms are denoted as Ld , avgdl , tfc(t), Lc ,
avgtfd , and mavgtf respectively.

3.2 Generalized and Extended Translation
Models

Based on the extended factors we just defined, we revisit the IR
models and replace their components with the introduced extended
ones. Since the logarithm function is regularly used as the damp-
ening function, we use Λ(x) = log(1 + x) to shorten notations.

3.2.1 Pivoted Length Normalization
Singhal et al. [33] identify a bias in the Cosine normalization as

it favors long documents in retrieval. They then propose the piv-
oted length normalization (PL) schema by introducing a correction
factor on the document length normalization. By replacing the ele-
ments of the original model, we define the Generalized Translation
model (GT) and Extended Translation (ET) model as follows:

PLGT (q, d) =
∑

t∈T̂d∩Tq

Λ(Λ(t̂f d(t)))

1− s+ s Ld
avgdl

tfq(t)log
|D|+ 1

dft
(7)

PLET (q, d) =
∑

t∈T̂d∩Tq

Λ(Λ(t̂f d(t)))

1− s+ s L̂d

âvgdl

tfq(t)log
|D|+ 1

d̂f t
(8)

We should note that the original formulation uses 1 + log(1 +
log(tf d) in the numerator, while in our formula above we use
log(1+log(1+tf d)). For values of tf d > 1 there is little difference
between the two, and they have both been used in the literature. In
our case, as it is theoretically possible that tf d < 1, the formula-
tion 1 + log(tfd) may give negative values, hence we prefer the
log(1 + tf d) variant.

3.2.2 BM25
BM25 is a widely popular and well-studied weighting model,

rooted in the 2-Poisson probabilistic model of term frequencies in
documents [30]. Due to the lack of space, we only show the Ex-
tended Translation model in Eq. 9 and 10. The Generalized Trans-
lation model (BM25GT ) follows the same approach while only
replacing the t̂f d(t) and T̂d components in the classical version.

BM25ET (q, d)=
∑

t∈T̂d∩Tq

(k1+1)t̂f d(t)

k1+ t̂f d(t)

(k3+1)tfq(t)

k3+tfq(t)
log
|D|+0.5

d̂f t +0.5

(9)
with

t̂f d(t) =
t̂f d(t)

B̂(d)
, B̂(d) = (1− b) + b

L̂d

âvgdl
(10)

3.2.3 Multi Aspect TF
Recently, Paik [24] addressed the limitations of the pivoted

length normalisation by exploiting new statistical factors in the
Multi Aspect TF (MATF) schema. The first component is Term
Frequency Factor (TFF) which consists of two factors: Relative
Intra-document tf (RI) measures the importance of a term regard-
ing to the average tf of the document and Length Regularised tf
(LR) that considers the length of the document in relation to the
average document length in the collection. Paik [24] then mentions
the different tendency of the factors to long and short queries and
combines them using the parameter ω which promises a reasonable
balance between the factors based on the query length. Both the
factors are dampened first by the log and then by f(x) = x

1+x
. We

therefore revisit the TFF component as follows:

R̂I (t , d) =
Λ(t̂f d(t))

Λ(âvgtf d)
(11)

L̂R(t , d) = t̂f d(t)Λ(
âvgdl

L̂d

) (12)

T̂FF (t , d) = ω
R̂I (t , d)

1 + R̂I (t , d)
+ (1− ω)

L̂R(t , d)

1 + L̂R(t , d)
(13)

as suggested by the paper, the ω parameter can be estimated by the
following function:

ω =
2

1 + Λ(|q|) (14)

where |q| is the length of the query.



The second component is the Term Discrimination Factor (TDC)
which uses inverse document frequency as well as average elite set
term frequency (AEF) based on the total occurrence of a term in
the entire collection. The extension of the factor as formulated as
follows:

ÂEF (t) =
t̂f c(t)

d̂f t
(15)

T̂DC (t) = log
|D|+ 1

d̂f t

ÂEF (t)

1 + ÂEF (t)
(16)

Finally, the extended version of the MATF’s translation model is
defined by integrating the two components:

MATFET (q, d) =
∑

t∈T̂d∩Tq

T̂FF (t , d)T̂DC (t) (17)

Here again, the generalised translation model (MATFGT ) is de-
fined by only replacing t̂f d(t) and T̂d in the original form of the
model i.e. only Eq. 11 and 17 are affected.

3.2.4 BM25 Verboseness Aware
Most recently, Lipani et al. [22] addressed the document length

normalisation factor of BM25 by proposing a novel parameter-free
length normalisation method that removes the need for the b pa-
rameter of BM25, called BM25 Verboseness Aware (BM25VA).
The method leverages the mean of the average occurrences of a
term in the documents to discover and supervise the effect of ver-
boseness in the documents. As the difference between the method
and BM25 is only in the factor B(d), we introduce the extended
version as follows:

B̂V A(d)=m̂avgtf
−2 L̂d

T̂d

+(1−m̂avgtf
−1

)
L̂d

âvgdl
(18)

The Generalized Translation and Extended Translation models
replace the original (BV A) and extended (B̂V A) form with the
B(d) component of the Translation and Extended BM25 model
(Eq. 10) respectively.

3.2.5 Language Model
The translation model has been introduced in the framework of

language modelling [3], so in this case we only point out that the
Generalised Translation model is the original one, as introduced by
Berger and Laferty (i.e. it is Generalised from language modelling
to the Probabilistic Relevance Framework). For completeness, we
also introduce the Extended Translation model for the LM frame-
work.

In order to unify the notation, we can rewrite the translation LM
in Eq. 1 as follows:

LMGT (q, d) =
∏
tq∈q

PT (t|d) (19)

where PT (t|d) =
∑
td∈d

PT (tq|td)P (td|d) is the translation
probability of generating term t in document d. Similar to related
studies [12, 41] , we define P (td|Md) as the maximum likelihood
estimation and inject PT (t|d) into a Dirichlet smoothing function
obtaining:

PT (t|d) =
Ld

Ld + µ

 ∑
t′∈Td

PT (t|t′)tfd(t′)
Ld

+
µ

Ld + µ
p(w|C)

(20)

Now we can select the alternative terms t′ based on the set of re-
lated terms R(t) and rewrite the element in the square brackets
above by explicitly exposing the term t where its translation prob-
ability to itself is one:

tfd(t) +
∑

t′∈R(t)

PT (t|t′)tf d(t
′) (21)

Eq. 21 is in fact identical to our definition of t̂f d(t) (Eq. 6) and
therefore we can formulate the translation language model based
on t̂f d(t) factor as follows:

LMGT (q, d) =
∏
tq∈q

∑
td∈d

Ld

Ld + µ
t̂f d(t) +

µ

Ld + µ

tfc(t)

Lc


(22)

Finally we define the Extended Translation model by replacing the
other components with their extended versions:

LMET (q, d) =
∏
tq∈q

∑
td∈d

L̂d

L̂d + µ
t̂f d(t) +

µ

L̂d + µ

t̂f c(t)

L̂c


(23)

3.3 Translation Models with Query Expan-
sion

Translation models have an intuitive connection with direct
query expansion methods. A natural question arising from general-
ising translation models into the probabilistic relevance framework
is how they compare with query expansion methods and whether
they benefit from pseudo relevance feedback (PRF).

Considering a query expansion method φ and the new set of
terms as φ(q), the general query expansion models is defined as:

S∗(q, d) =
∑
t∈φ(q)

wS(t, d) (24)

where each of the new terms has a coefficient of w, S∗ is the final
document score, and S is any scoring schema described above. If
φ is based on term-term similarity, then S must be one of the basic
methods (i.e. not using either the Generalized, nor Extended Trans-
lation models) because we would be using the same terms in both
cases. If φ is PRF, then S can be any of the methods previously
described because the set of words would be different.

4. EXPERIMENTAL METHODOLOGY
In order to evaluate the performance of the introduced General-

ized Translation (GT) and the Extended Translation (ET) models,
we evaluate them based on each of the mentioned relevance models
(Section 3.2) on 6 test collections. In addition, we combine and test
both the translation models with the PRF query expansion method
as described in Section 3.3. We denote the Generalized Translation
and Extended Translation models, combined with PRF as PRF-GT
and PRF-ET respectively.

In the following, we introduce our experimental methodology,
including test collections, baselines, parameter settings, and evalu-
ation metrics.

Data Resources.
We conduct the experiments on 6 collections: combination of

TREC 1 to 3, TREC-6, TREC-7, and TREC-8 of the AdHoc track,
TREC-2005 HARD track, and CLEF eHealth 2015 Task 2 User-
Centred Health Information Retrieval [25]. For the TREC tasks we
always used the title of the queries for retrieval. Table 1 summarises
the statistics of the test collections. For pre-processing, we apply



Table 1: Test collections
Name Collection # Doc Topics
TREC 123 Disc1&2 740088 51-200 Adhoc
TREC 6 Disc4&5 551873 301-350 Adhoc

TREC 7, 8 Disc4&5
without CR 523951 351-400, 401-450

Adhoc
HARD AQUAINT 1033461 2005 Track (50 topics)

eHealth as defined
in [25] 1104337 CLEF-eHealth 2015

Task 2 (67 topics)

Table 2: Baselines and their symbols for the significance tests
Baseline Tested from Sig. Test

STD All the models and baselines †
LOG GT, ET `

NORM GT, ET ν
PRF PRF-GT, PRF-ET ρ

GT / PRF-GT ET / PRF-ET §

the Porter stemmer and remove stop words using a small list of 127
common English terms. We use the NLTK1 toolkit.

We train the word embedding model for the Adhoc and Hard
tracks using the Wikipedia dump file for August 2015. For the
eHealth task, similar to Koopman et al. [15] that train word em-
beddings based on the domain corpora, we use the corpus extracted
from the task’s collection. For both, we use the Word2Vec SGNS
method with vectors of 300 dimensions, sub-sampling parameter
set to 10−5, context windows of 5 words, epochs of 25, and word
count threshold 20. Our own experiments (not reported here) as
well as those reported by Zuccon et al. [41], indicate these param-
eters as reasonable as a general baseline.

Baselines.
In order to test the performance of the introduced translation

models (GT and ET), for each IR schema we define three baselines:

1. STD: The original version of the models
2. LOG: The query expanded version using the logarithm

weighting model, introduced in Eq. 2
3. NORM: The query expanded version with the normalization

over the expanded terms, formulated in Eq. 3
Both the LOG and NORM expansion models calculate the final

score using Eq. 24, while their weighting methods are only for the
expanded terms and the weights of the original terms of the query
are one (t ∈ Tq : w = 1). In addition to these two methods, we
experimented with the direct use of translation probability PT (t|tq)
as the weight for expansion. However due to the extremely weak
performance observed, we removed it from the baselines.

In the experiments with combination to Pseudo Relevance Feed-
back query expansion (PRF-GT and PRF-ET), we test them against
two baselines: original PRF, and original model (STD).

Finally, in both basic and with PRF modes, we test the perfor-
mance of Extended Translation model (ET/PRF-ET) against the
Generalised Translation model (GT/PRF-GT) respectively.

All the baselines as well as their corresponding symbols for the
significance test are summarised in Table 2. Statistical significance
tests are done using the two sided paired t-test and statistical sig-
nificance is reported for p < 0.05.

Related Terms.
An essential part of all our extended models is the definition of

“the set of related terms”. In order to find this set for a given term
(R(t) in Section 3.1), we consider two approaches: 1. selecting
1http://www.nltk.org

Table 3: Example of conceptually related document, found by our
approach, while not judged in the TREC-6 AdHoc track

Qry. 311 Industrial Espionage

Doc.
FBIS4-
23903

... recruited last year by the intelligence service
once more ... were indicted for high treason in the
form of spying, including ... agent was in
particular in charge of financing ...

the top-N similar terms in the collection, and 2. selecting the set of
terms whose similarity values to the term t are above a threshold θ.

Normally, the first approach is the common method for defin-
ing the related terms, used in several studies [8, 41]. However, as
shown by Karlgren et al. [14], the distribution of the distances of
the neighbouring terms is different for various terms, i.e. some
words have more/less neighbours in a specific boundary. Inspired
by this study, we observe the neighbouring terms of the term ex-
cursion in the Word2Vec model and spot the term tourist is the 4th
most similar (closest) neighbor. However, looking at the top neigh-
bours of tourist, the term excursion is the 17th one2. We assume
that as tourist is a more frequent term with more contexts in the
language, its neighbourhood is richer than excursion and in other
words has more related terms. This observation motivates us for
experimenting the effect of selecting the related terms based on a
threshold θ as an alternative for the top-N approach.

Parameter Setting.
Since the basic parameters of each model are shared between the

extended and original method, the choice of parameters is not ex-
plored as part of this study. Therefore, for each method we select a
standard set of parameters, suggested in related studies. For BM25
and BM25 Verboseness Aware (BM25VA), we set b = 0.6 (only
for BM25), k1 = 1.2, and k3 = 1000, for Pivoted Length Normal-
ization (PL), the parameter s is set to 0.05, and for Language Mod-
eling (LM), we set µ to 1000. The Multi Aspect TF (MATF) does
not require any parameter setting. For PRF we arbitrarily fixed the
number of top-ranked documents to 3 and the number of expanded
terms to 10.

In filtering related terms, for the top-N approach, follow-
ing the related studies, we try N with 2, 5 and 10 and
for the threshold approach, we experiment with θ values of
{0.65, 0.68, 0.70, 0.72, 0.77, 0.82}.

Evaluation Metrics.
The evaluation of retrieval effectiveness is done with respect to

MAP and NDCG@20, as standard measures. However, our initial
experiments showed that the extended methods retrieved a substan-
tial proportion of unjudged documents. Looking at some of these
unjudged retrieved results, we find different documents that seem
relevant to the query. For example, as shown in Table 3, the docu-
ment does not contain the term ‘espionage’ requested by the query,
but there are many occurrences of the similar words like ‘spy’, ‘in-
telligence service’, or ‘agent’. We assume that it is due to the essen-
tial difference between the extended models and the standard term
frequency-based methods which contributed to the creation of the
relevance assessments used in the collections. Therefore, in order
to provide a fairer evaluation framework, we consider MAP and
NDCG over the condensed lists [32]3.

2Noted that, the Cosine similarity is symmetric and in this case its
values is equal to 0.54.
3The condensed lists are used by adding the -J parameter to the
trec_eval command parameters



5. RESULTS AND DISCUSSION
We evaluated the performance of the introduced Generalized as

well as Extended Translation models on the mentioned IR mod-
els (Section 3.2) with different parameters for filtering the related
terms, discussed in the previous section. Among the results, we
found using the threshold approach with θ = 0.7 as the best per-
forming and also most stable result among various models and
therefore used for comparison of the models in the following.

The evaluation results of the MAP and NDCG@20 measures on
the 6 test collections are shown in Figure 1. Each line in the plots
shows the result of one IR model in two sections: from STD to
ET the standalone version, and from PRF to PRF-ET when com-
bined with the Pseudo Relevance Feedback query expansion. Sig-
nificant differences of the results against the respective baselines
are marked on the plots using the symbols defined in Table 2. Ta-
ble 5 shows the detailed results.

Starting with the results of the MAP measure, we observe that
using the Generalised as well as Extended Translation models we
gain significantly better performance in 4 of 6 collections, com-
pared to the original models as well as compared with the LOG
and NORM expansion methods. Only in the TREC-123 and TREC-
7 collections, there is no statistically significant improvement, al-
though there is no deterioration of results either. Looking at the
expansion methods, the LOG and NORM models also improve the
baseline only slightly.

The results of combining PRF query expansion with the Gener-
alised and Extended Translation models shows significant improve-
ment over the original as well as PRF models (except in TREC-
123 and TREC-7), achieved by both translation models. This im-
provement over PRF is similar to the improvement achieved by the
models without PRF over the original models, showing indeed that
global techniques and local feedback can effectively complement
each other.

Comparing the Extended Translation model with the Generalised
one, in general ET/PRF-ET brings only a slight improvement to
GT/PRF-GT. In some cases, notably the eHealth collection, the
PRF-ET model provides a significant improvement over all the
other models including PRF-GT.

The trends in the results of the NDCG@20 measure are generally
similar to the ones of MAP, except in some rare cases such as the
LM and PTFIDF methods in the TREC-7 collection.

In order to have an overview on all the models, we calculate the
gain of each model over its original form and averaged the gains on
the six collections. The results for MAP are depicted in Figure 2a.
As mentioned before, we can see the significance improvement of
the GT and ET over the baselines. Also, while PRF has improved
the baselines, its performance has then significantly been boosted
by the generalised and extended translation models. In addition,
ET/PRF-ET show overall slight improvement to GT/PRF-GT. In
some cases, e.g. for the BM25 and BM25VA models, this is signif-
icant.

In order to compare with previously reported results, Table 4
shows the best achieved results in each collection with the normal
evaluation (i.e. not considering only the condensed lists, but rather
considering the retrieved unjudged documents as non-relevant). In
the literature it is not always clear what method the authors have
used, so identifying the state-of-the-art for each collection is dif-
ficult and potentially controversial. TREC-8 Ad Hoc is however
one of the most widely reported benchmarks, and regardless of
whether we consider the condensed lists or not, the generalised and
extended translation models proposed here show considerable im-
provements with respect to reports of the most recent experiments
in our field [8, 22, 24, 41].

Table 4: The best results per collection

Measure Collection Method Scoring Value

TREC-123 MAP PRF BM25V 0.306
NDCG@20 ET BM25V 0.571

TREC-6 MAP PRF-ET BM25V 0.270
NDCG@20 PRF-ET BM25V 0.455

TREC-7 MAP PRF-ET MATF 0.226
NDCG@20 PRF-ET MATF 0.424

TREC-8 MAP PRF-ET MATF 0.295
NDCG@20 PRF-ET MATF 0.481

HARD MAP PRF-GT BM25V 0.241
NDCG@20 PRF-GT BM25V 0.375

Threshold or Top-N.
As mentioned before, we considered two approaches for select-

ing the related terms: threshold-based and top-N. Figure 2b shows
the aggregated gain of the best performing top-N approach (N = 2)
over all the collections. Comparing it with Figure 2a, we see that
while the selection of related terms from the top N terms generally
improves the baselines, the performance of GT and ET and respec-
tively PRF-GT and PRF-ET models using the threshold method
considerably outperforms the top-N approach.

By having a closer look to the number of selected terms per term
in the threshold approach with θ = 0.7, we see a wide range of
numbers, from 0 (no expansion) in several cases to a maximum of
63 terms. The average number of terms is 1.4, but the standard
deviation is 3.7.

On the other hand, the LOG and NORM models are only
marginally affected by changing the approaches and keep the re-
sults close to the baseline. This is due to their conservative ap-
proaches for weighting the expanded terms—aggregating over all
weights in NORM and dampening in LOG.

Limitations.
As with any method relying on a numerical value to represent

the similarity of two terms, our extended components are limited by
the definition of similarity. Analysing the cases where the extended
model results were lower than the optimal showed that sometimes
the extended terms introduce bias in search as they represent re-
lated terms but not similar ones. For example, the word embedding
models indicate ‘Alzheimer’ as highly related to ‘Multiple sclerosis
(MS)’ (as they usually appear in very similar contexts), although
they are not similar in the sense that a query on one of them is
hardly presumed to be satisfied by a document on the other. How-
ever, this is a general issue in query expansion, when the expanded
words introduce bias to the original query. We can only consider
these points as limitations of the methods and open questions for
further research.

Efficiency.
Before concluding, it is worth noting that the Generalised as

well as the Extended Translation models do not impose significant
query-time overheads on the existing IR engines. Given the thresh-
old, the set of related terms can be precomputed. The overhead of
changing the statistics of the collection for the Extended model is
computationally similar to one query time which makes it similar to
the overhead of using PRF. Further optimization in this area is cer-
tainly possible. Our code is open source and available on Github4.

6. CONCLUSION
We have proposed a generalisation and an extension of transla-

tion models in the probabilistic relevance framework models in or-

4https://github.com/neds/semanticsim



(a) TREC-Adhoc-123 (b) TREC-Adhoc-6 (c) TREC-Adhoc-7

(d) TREC-Adhoc-8 (e) TREC-2005-HARD (f) CLEF-eHealth15

(g) TREC-Adhoc-123 (h) TREC-Adhoc-6 (i) TREC-Adhoc-7

(j) TREC-Adhoc-8 (k) TREC-2005-HARD (l) CLEF-eHealth15

Figure 1: MAP and NDCG@20 evaluation of the TREC-123, TREC-6, TREC-7, TREC-8 Adhoc, TREC-2005 HARD, and CLEF-eHealth
2015 task 2. The baselines and the signs for significance difference tests are shown in Table 2. The related terms are filtered when the
similarities of the neighbouring terms are higher than the threshold θ = 0.7

der to take advantage of the new, rich semantic resources provided
by recent developments in machine learning.

Concretely, we have introduced changes in the calculation of
core elements of probabilistic relevance framework models (term
frequency, document frequency), following the implicit assumption

that query terms denote concepts and that counting the presence of
these terms in the documents and the collection is a surrogate for
counting the presence of the concepts. By simply replacing the oc-
currence of similar terms with that of the query terms we maintain
the simplicity and robustness of the existing models, while improv-



(a) Related terms with best performing threshold (θ = 0.7)

(b) Related terms with best performing top-N (N = 2)

Figure 2: The gain of the models with the MAP measure regarding
to their original versions, aggregated over all the collections.

ing retrieval performance. We compared this approach with query
expansion and also combined it with PRF based methods, observ-
ing the complementary effect of these two approaches, resulting in
boosted performance.

This improvement in retrieval effectiveness is demonstrated on
six test collections and five IR models, by achieving state-of-the-
art results.

In the process, we also observe the effectiveness of selecting the
“related terms” based on similarity boundary around the neighbour-
ing space of a term. This approach shows competitive performance
compared with selecting the top-N most similar terms, which is,
based on our experiments, conclusively shown to underperform.
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